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Abstract

Background: The present study was designed to determine the median lethal concentration (96-h LC50) of
triclosan (TCS) and to investigate the effect of a sublethal concentrations of TCS on the activities of glutamic
oxaloacetic transaminases (GOT), glutamic pyruvic transaminases (GPT), and glutathione S-transferase (GST) in the
gill, liver, and muscle of an Indian major carp Catla catla.

Results: In this study, static renewal procedure was followed to determine the 96 LC50 value. The results indicated
that the 96-h LC50 of TCS for C. catla was 0.36 mg L−1. 1/10th, 1/25th, and 1/50th of 96-h LC50 value (0.036, 0.014,
0.007 mg L−1) were selected for sublethal studies, and the fish were examined every 5 days for 20 days. The results
indicated that TCS exposure to fish at three different sublethal concentrations significantly (p < 0.05, p < 0.01)
enhanced GOT, GPT, and GST enzyme activity in all the tissues with increased dose and exposure period.

Conclusion: Prolonged exposure (20 days) to TCS at sublethal concentrations induces severe physiological
alterations in Catla catla, and these biomarkers can be used as a mechanistic tool for evaluating the toxicity-derived
alterations in fish.
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Background
Triclosan (5-chloro-2-(2,4- dichlorophenoxy) phenol)
(TCS), is a common synthetic antimicrobial compound
widely used in domestic and consumer care products such
as soaps, toothpaste, deodorants, mouthwash, kitchen
utensils, textiles, plastics, and medical devices for over 40
years (Hu et al., 2016; Yueh & Tukey, 2016). TCS exerts
its antimicrobial effect by interfering with enoyl-acyl car-
rier protein reductase (FabI) activity, which is required for
fatty acid and biotin biosynthesis. This ultimately leads to
the suppression of bacterial growth. Also, TCS destabilizes
bacterial membrane by inducing K+ leakage (Suller & Rus-
sell, 2000). Dann and Hontela (2011) reported that the
worldwide production of TCS has now exceeded 1500
tons per year. Owing to its wide use, and its partial re-
moval from wastewater treatment plants have contributed
to its ubiquitous occurrence in various environmental

matrices such as wastewater [8.05 μg L−1] (Lozano, Rice,
Ramirez, & Torrents, 2013), surface water [0.282 g L−1]
(Sorensen et al., 2015), and sediments [41.7 g kg−1] (Peng
et al., 2017). Today, TCS is one of the more frequently de-
tected organic micropollutants in the aquatic environment
(Huang et al., 2016; Zhang, Niu, & Wang, 2016).
The frequent detection of TCS in aquatic environments

has elicited concern in both the public as well as scientific
communities regarding its bioaccumulation and toxicity
to aquatic organisms. TCS possesses a relatively high
octanol-water partitioning coefficient (log Kow) of 4.8
(Halden & Paull, 2005) and high organic carbon-water
partitioning coefficients (log Koc) of 3.8–4.0 (Lindström et
al., 2002), which can lead to its bioaccumulation in fatty
tissues and biomagnification via food chain, ultimately
threatening the safety of nontarget organisms (Ding et al.,
2017). One of its degradation products, methyl-triclosan
(M-TCS), is more persistent and toxic than the parent
compound and thus presents a greater potential for bio-
accumulation (Rüdel et al., 2013).
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Numerous studies have revealed the presence of TCS
in various aquatic organisms. Adolfsson-Erici, Petters-
son, Parkkonen, and Sturve (2002) measured TCS levels
in the bile of rainbow trout (Oncorhynchus mykiss) ex-
posed to sewage water. TCS concentrations in bile fluid
ranged from 0.44–120 mg kg−1 in fish exposed to sewage
water. Likewise, Valters et al. (2005) detected TCS in the
blood plasma of 13 fish species collected from the De-
troit River (750 to > 10,000 pg g−1 ww). Low levels of
TCS have also been detected in the plasma of wild At-
lantic bottlenose dolphins (Tursiops truncates) (Fair et
al., 2009) and a killer whale (Orcinus orca) (Bennett,
Ross, Huff, Alaee, & Letcher, 2009). TCS concentrations
in plasma ranged from 0.025 to 0.2750 ng g−1 wet weight
for the dolphins and 9.0 ng g−1 of wet weight for the
killer whale, respectively. Similarly, a pharmacokinetic
study determined that significant levels of TCS were
widely detected in human body fluids such as urine
(Calafat, Ye, Wong, Reidy, & Needham, 2008), blood
plasma (Hovander et al., 2002), and even breast milk
(Dayan, 2007). Based on these studies and the possible
risk associated with TCS exposure, it is currently classi-
fied as a category III compound by the US Food and
Drug Administration (Fang et al., 2010), which has re-
cently banned its use in consumer soap (FDA (U.S. Food
and Drug Administration), 2016).
Earlier findings have indicated that the TCS is highly

toxic to aquatic organisms. It was reported that TCS cause
developmental anomalies with embryotoxicity and bio-
chemical changes, bioaccumulation, endocrine disruption,
and reproductive effects in Japanese medaka (Foran, Ben-
nett, & Benson, 2000; Horie, Yamagishi, Takahashi, Iguchi,
& Tatarazako, 2017; Ishibashi et al., 2004) and zebrafish
(Falisse, Voisin, & Silvestre, 2017; Oliveira, Domingues,
Grisolia, & Soares, 2009). In male medaka (Foran et al.,
2000), triclosan has been shown to exhibit changes in fin
length and sex ratios, suggesting that triclosan has a weak
androgenic effect. Furthermore, triclosan has been shown
to increase vitellogenin (Vtg) production in male medaka
Oryzias latipes (Ishibashi et al., 2004), in male western
mosquitofish Gambusia affinis (Raut & Angus, 2010), and
in male Yellow River carp Cyprinus carpio (Wang, Guo,
Chen, Sun, & Fan, 2017a), further suggesting that TCS has
significant estrogenic properties. Recent studies have also
reported that TCS could induce genotoxic and cytotoxic
effects in fish (Capkin, Ozcelep, Kayis, & Altinok, 2017)
and other aquatic organisms (Binelli, Cogni, Parolini, Riva,
& Provini, 2009).
There is strong evidence that TCS could interfere with

thyroid hormone (TH)- associated gene expression, ac-
celerate TH-induced metamorphosis, and/or alter larval
growth on amphibian (Fort et al., 2011; Helbing, van
Aggelen, & Veldhoen, 2011; Veldhoen et al., 2006), and
modulates thyroid homeostasis in fish (Schnitzler et al.,

2016). In male rats, TCS exposure led to decreases in
serum testosterone (T), sperm production, and male
accessory gland weight (Kumar, Chakraborty, Kural, &
Roy, 2009). Recent studies have also shown that TCS
may interfere with thyroid hormone metabolism in
humans through the activation of nuclear receptors such
as pregnane X receptor (PXR) and constitutive andros-
tane receptor (CAR) (Yoon et al., 2017). In vitro studies
also confirmed that TCS exert both estrogenic and an-
drogenic effects in assays with breast cancer cells (Clay-
ton, Todd, Dowd, & Aiello, 2011; Gee, Taylor, & Darbre,
2008) and receptor-based bioassay screens. These ad-
verse effects were thought to be due to the ability of
TCS to act as a potential endocrine disruptor in organ-
isms because of its structural similarity to the thyroid
hormone thyroxine (T4) and to other known endocrine
disruptors, including polychlorinated biphenyls, diethyl-
stilbestrol, and bisphenol A (Ahn et al., 2008).
Numerous studies on the effect of triclosan on several

fish species have been investigated; there is virtually no
scientific documentation on triclosan’s effect on the In-
dian major carp. Furthermore, measurable levels of TCS
were detected in the Kaveri River, Vellar River/estuary,
Pichavaram mangrove, and Tamiraparani River in South
India (Ramaswamy, Shanmugam, Velu, Rengarajan, &
Larsson, 2011) and it also been detected in the muscle
samples of fish Gibelion catla sampled from the Kaveri
River, in the range of 0.73–50 ng/g wet weight (Shanmu-
gam, Ramasamy, Selvaraj, Sampath, & Ramaswamy,
2014). Hence, the present study used the Indian major
carp C. catla to determine the impact of triclosan be-
cause C. catla is a common inhabitant of freshwater
bodies and widely used species for food consumption in
India. Measurement of glutamic oxaloacetic transami-
nases (GOT), glutamic pyruvic transaminases (GPT),
and glutathione S-transferase (GST) enzymes have been
selected as stress indicators in fish for this study, be-
cause these enzymes are considered to be an important
serum markers to investigate the health of animal spe-
cies in concern (Hyne & Maher, 2003; Ramesh, Anitha,
Poopal, & Shobana, 2018).

Materials and methods
Chemicals
Triclosan (97% pure; 5-chloro-2-(2,4-dichlorophenoxy)
phenol; TCS) and dimethyl sulfoxide (99.9% pure;
DMSO) were purchased from Sigma-Aldrich, USA. All
reagents were of analytical grade.

Test fish and culture conditions
Fingerlings of Catla catla (12 ± 0.25 g in body weight
and 6.3 ± 0.02 cm in body length) were netted from
Tamil Nadu Fisheries Development Corporation Lim-
ited, Aliyar Fish Farm, Tamil Nadu, India. The fish were
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acclimated to the laboratory condition for a month in
350-L fiberglass tanks containing aerated and dechlori-
nated water, under natural photoperiod conditions
(12:12 h light to dark regime) before the experimenta-
tion. During acclimatization and exposure periods, the
fish were fed once in a day with rice bran and groundnut
oil cake (ad libitum). Each day, dead fish (if occurred)
were removed, and 80% of the water volume was
renewed to assure water quality. The physicochemical
characteristics of the test water were temperature (25.0
± 1.0 °C), pH (7.0 ± 1), salinity (0.28 ± 0.1 ppt), and total
hardness (16.0 ± 0.5 mg L− 1) (American Public Health
Association (APHA), 1998). The fish were starved for
24 h before experimentation to avoid prandial effects
during the assay.

Determination of 96-h LC50 of TCS and selection of
exposure concentrations
Acute toxicity tests (96-h duration) were conducted using a
static renewal procedure (APHA, AWWA, WPCF, 2005).
Test solutions of TCS were prepared by dissolving in di-
methyl sulfoxide (DMSO) and further diluted in double dis-
tilled water. Prior to the definitive tests, range-finding tests
were performed to determine the appropriate concentra-
tion ranges for conducting the definitive test (APHA,
1998). For range-finding test, we prepared different concen-
trations of TCS (data not shown) and control in a 15-L
glass tank, with a test volume of 10 L. For each TCS con-
centration and control, three replicates were made and 10
fish fingerlings were placed in each. Mortality of the fish
fingerlings was routinely monitored and recorded. After
preliminary range-finding test, the nominal concentration
range (0.2, 0. 25, 0.3, 0.35, and 0.4mg L−1) for the definitive
test was selected. Based on the data obtained, the experi-
ment was repeated in triplicate to obtain the 96-h LC50
value of the test chemical for the target species. Mortality
was recorded at the end of every 24, 48, 72, and 96 h, and
dead fish were removed immediately. Behavioral changes
were followed closely.

Exposure and experimental design
A total of 100 fingerlings were used in the sublethal ex-
periment. The sample was divided into four groups
(three experimental groups and one control) of 25 fish
each in separate 50-L glass aquaria (60 × 30 × 30 cm)
with three replicates. After acclimatization, these fish
were exposed to 0.007 (1/50th), 0.014 (1/25th), and
0.036 (1/10th) mg L−1 of TCS for 20 days. The control
experiments were also performed with the addition of
carrier solvent alone (DMSO). The exposure was per-
formed semi-statically, and one half of the water in the
aquarium was renewed and spiked with the toxin daily.
At regular intervals of sublethal toxicity on days 5, 10, 15,

and 20, five fish from each group were randomly selected

and killed by immersion in melting ice, and the tissues were
excised, i.e., the gill, liver, and muscle. Tissues were homog-
enized by grinding at 4 °C in 50mM potassium phosphate
buffer (pH 7.0) containing 0.5mM EDTA. Homogenate
was centrifuged at 10.000×g for 15min at 4 °C. The result-
ant supernatant was used for the estimation of glutamate
oxaloacetate transaminase (GOT), glutamate pyruvate
transaminase (GPT), and glutathione-S-transferase (GST)
enzyme activities. All the enzyme preparation was carried
out in a chilled condition.

Enzyme assay
Biochemical indices including glutamate oxaloacetate
transaminase (GOT) and glutamate pyruvate transamin-
ase (GPT) activities in the gill, liver, and muscle have
been studied from both control and experimental fish
following the method of Reitman and Franckel (1957).
Glutathione-S-transferase (GST) activity was estimated
using the diagnostic kit supplied by Nanjing Jiancheng
Bioengineering Institute, Nanjing City, P.R. China.

Protein estimation
Protein was estimated spectrophotometrically by the
method of Lowry, Rosebrough, Farr, and Randall (1951),
using the Folin phenol reagent with bovine serum albu-
min (BSA) as a standard.

Statistical analysis
All data in this study were analyzed by SPSS 20.0 and
were expressed as a mean ± standard error (SE). Statis-
tical differences were determined by one-way ANOVA
with a post hoc Duncan’s multiple range test (DMRT).
Values were considered as statistically significant when
p < 0.05 and highly significant when p < 0.01.

Results
No mortality was recorded in the controls. The 96-h
LC50 value for TCS in C. catla was 0.36 mg L−1, and the
95% confidence intervals ranged from 0.348 to 0.379
mg L−1. The risk ranking of TCS is therefore highly toxic
(Passino & Smith, 1987).
The changes in GOT and GPT enzyme activities in tis-

sues (gills, liver, and muscle) of C. catla exposed to TCS
are given in Figs. 1 and 2. The obtained results revealed
that treatment of C. catla with TCS induced significant
increase in GOT and GPT activity in the gill, liver, and
muscle as compared to the control. All these increases
are significantly related to the increase of TCS dose
through the exposure period (20 days). The lowest levels
of GOT and GPT activity were recorded at 5 days in
0.007 mg L−1 of TCS in all tissues, and the levels grad-
ually increased as the experiment progressed. There
were also concentration and time-dependent increases
in GST activity in all tissues (gill, liver, and muscle)
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among fish exposed to TCS (Fig. 3). The maximum in-
crease in GST activity was 206.7% in the case of liver tis-
sue. The increased values of the gill and muscle were of
the order of 134.8% and 78% when compared with con-
trol values.

Discussion
In the present study, the 96-h LC50 of TCS to C. catla
was found to be 0.36mg L−1, and the 95% confidence in-
tervals ranged from 0.348 to 0.379mg L−1. The risk rank-
ing of TCS is therefore highly toxic to fish (Passino &
Smith, 1987). Similar to our results, Oliveira et al. (2009)
also reported that the 96-h LC50 of TCS for Danio rerio is
0.34mg L−1. However, the 96-h LC50 value for TCS to
common carp observed in the current study was lower
from the results reported by Escarrone, Caldas, Primel,
Martins, and Nery (2016) and Wang, Liu, Chen, Xu, and
Wang (2017b). In contrast, the 96-h LC50 value for TCS
to common carp observed in the present study was higher

from the results reported by Liang, Nie, Ying, An, and Li
(2013) and Orvos et al. (2002). The variations between
their results and ours may result from differences in the
age, size, health, and type of species (Abdul-Farah, Ateeq,
Ali, & Ahmad, 2004) and also may be due concentration
and formulation of chemical (Nwani et al., 2011). Hence,
it is concluded that the toxic nature may depend on spe-
cies and chemical.
Glutamic oxaloacetic (GOT) and glutamic pyruvic (GPT)

transaminases are among many enzymes that are com-
monly used as biomarkers of environmental pollution
(El-Shehawi, Ali, & Seehy, 2007). Kabeer Ahmad and Rao
(1980) reported that transamination and transdeamination
reactions are prominent under stress conditions. These two
key enzymes are known for their role in the mobilizing
L-amino acid for the gluconeogenesis and in the metabol-
ism of carbohydrate and protein. When the cell is damaged,
these enzymes are released into the bloodstream, thus mak-
ing the enzyme level in the blood to go up. Martins,

Fig. 1 Effect of sublethal concentrations of TCS on GOT activity in different tissues of C. catla. Values are means ± SE of five individual
observations. Asterisk and double asterisk indicate statistically significant differences from control values at p < 0.05 and p < 0.01, respectively

Fig. 2 Effect of sublethal concentrations of TCS on GPT activity in different tissues of C. catla. Values are means ± SE of five individual
observations. Asterisk and double asterisk indicate statistically significant differences from control values at p < 0.05 and p < 0.01, respectively
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Monteiro, Soares, and Quintaneiro (2017) reported that
TCS in the fish liver could be metabolized to toxic interme-
diates which generate reactive oxygen species (ROS). In-
creases in intracellular ROS may cause lipid peroxidation
(LPO) resulting in an increased permeability of liver cell
membrane. As a result, hepatic enzymes including GOT
and GPT are released into plasma (Srivastava et al., 2004;
Venkateswara Rao, 2006). Likewise, ROS produced from
the metabolism of TCS may damage other organs such as
the gills, kidney, and muscle, etc., causing the leakage of en-
zymes into plasma. In this sense, if the cellular injury is
chronic, GOT and GPT levels will remain elevated (Banaee,
Sureda, Mirvaghefi, & Ahmadi, 2011). In the present study,
the elevation of GOT and GPT activity in the gill, liver, and
muscle of TCS-exposed fish indicates the damage of these
organs/tissue due to TCS toxicity.
The elevation of transaminases (GOT and GPT) activity

in gill, liver and muscle of carbamazepine (CBZ)-exposed
fish may be due to organ damage due to drug toxicity
(Malarvizhi, Kavitha, Saravanan, & Ramesh, 2012). Eleva-
tion of GOTand GPTactivities were also recorded in Labeo
rohita exposed to oxytetracycline and N-acetyl-p-amino-
phenol (Ambili, Saravanan, Ramesh, Abhijith, & Poopal,
2013; Renuka, Poopal, Ramesh, & Clara-Bindu, 2018) and
in Cyprinus carpio var. Jian exposed to 2,3,7,8-tetrachloro-
dibenzo-p-dioxin (TCDD) (Du, Cao, Jia, & Yin, 2017). The
increase in GOTand GPTactivity in fish may be a mechan-
ism to meet increase energy demand under toxic conditions
(Ambili et al., 2013). A change in protein and carbohydrate
metabolism during stress condition may also affect the
GOT and GPT activity (Reddy & Venugopal, 1991). Barse
et al. (2010) stated that the increase in GPT activity in
Cyprinus carpio exposed to methylparaben an antibacterial
as well as antifungal agent indicates increased transamin-
ation. TCS mainly induces toxic stress in aquatic organisms
in the form of non-specific narcosis and specific actions

such as membrane destabilization and uncoupling of oxida-
tive phosphorylation (Franz, Altenburger, Heilmaeir, &
Schmidtt-Jansen, 2008; Lyndall et al., 2010).
Glutathione S-transferase (GST) is considered the most

important enzyme in the phase II pathway, which involved
in xenobiotic detoxification and excretion of xenobiotics
and their metabolites (George, 1994; Sheehan, Meade,
Foley, & Dowd, 2001). GST converts xenobiotics to
non-toxic metabolites by conjugation with GSH (Halliwell
& Gutteridge, 1989; Hermes-Lima & Storey, 1993). In-
creased (Smith & Litwack, 1980) or inhibited (Oruc, Sev-
giler, & Uner, 2004) activities of GST occurs in several
tissues of fish at different exposure periods to inducers,
and this depends on the type of tissue and nature of the
inducer (Cho & Kim, 2000; Lamb & Franklin, 2000). Gen-
erally, the GST was more active in the liver tissue than in
the gill and muscle, which indicates the effective role of
the liver in xenobiotic detoxification process (Basha &
Rani, 2003). A similar tendency in GST activities was ob-
served in fish C. catla after TCS exposure. This indicates
the active involvement of this enzyme in detoxification of
xenobiotics. The activation of GST activity in
TCS-exposed T. japonicas indicates the antioxidant
defense system to cope up the oxidative stress (Park, Han,
Lee, Seo, & Lee, 2017). Sahu, Karmakar, Kumar, Shukla,
and Kumar (2018) reported that the significant increase in
glutathione-S-transferase activity in the gill and liver tissue
of Pangasianodon hypophthalmus exposed to triclosan in-
dicates the scavenging of oxygen radicals by the enzymes.
The inducement of antioxidant system in

TCS-exposed goldfish Carassius auratus at acute con-
centration may be beneficial to protect the cells from
oxidative damage (Wang, Xu, Zheng, & Haifang, 2018).
Likewise, TCS stimulated the GST activity in mussel di-
gestive gland indicating that TCS may be a substrate for
phase II enzymes (Canesi et al., 2007). Such results are

Fig. 3 Effect of sublethal concentrations of TCS on GST activity in different tissues of C. catla. Values are means ± SE of five individual
observations. Asterisk and double asterisk indicate statistically significant differences from control values at p < 0.05 and p < 0.01, respectively
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concordant with the previous reports of the effects of
TCS on other species such as zebrafish (Oliveira et al.,
2009); swordtail fish (Liang et al., 2013); Daphnia magna
(Peng et al., 2013); Yellow Catfish (Ku et al., 2014); cope-
pod (Park et al., 2017); frog (Martins et al., 2017); and
Brachionus koreanus ((Han et al., 2016). In contrast to
the above, no significant effect on GST activity was no-
ticed at lower concentrations (Falisse et al., 2017; Oli-
veira et al., 2009). GST mRNA expression was found to
be maximum in swordtails exposed to high dose of TCS
suggesting that the enzyme played an significant role in
detoxifying TCS (Liang et al., 2013). In aquatic organ-
isms, GST produce less toxic and hydrophilic molecules
which play a major role to prevent the oxidative damage
via the conjugation of the breakdown products of lipid
peroxidases to GSH (Fernandes, Fontainhas-Fernandes,
Ferreira, & Salgado, 2008). Hence, the alteration of GST
activity can be widely used as a biomarker for the effects
caused by xenobiotics (Dourado, Fernandes, Mannervik,
& Romos, 2008).

Conclusions
The 96-h LC50 of TCS for C. catla was determined to be
0.036mg L− 1. The effects of sublethal concentrations of
TCS on stress-mediated enzymes were investigated in the
gill, liver, and muscle. In this study, the sublethal concen-
trations of TCS caused significant changes in the GOT,
GPT, and GST activities compared with the control. Thus,
these enzymes could be selected as a suitable biomarker
to reflect TCS effects in C. catla. Furthermore, this result
exhibited that increasing concentration of TCS in the en-
vironment causes considerable stress for Indian major
carp C. catla, suggesting that TCS is highly toxic to fish.

Abbreviations
DMRT: Duncan’s multiple range test; GOT: Glutamic oxaloacetic;
GPT: Glutamic pyruvic; GST: Glutathione S-transferase; ROS: Reactive oxygen
species; TCS: Triclosan
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