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Cisplatin-induced neurotoxicity in
cerebellar cortex of male mice involves
oxidative stress and histopathology
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Abstract

Background: Despite evidence of neurotoxicity, cisplatin is still considered the most potent drug prescribed in
human chemotherapy for a broad spectrum of malignancies. The objective was to evaluate the cerebellar cortex
damage including oxidative stress biomarkers and histopathology aspects in male mice. One saline control group
and two cisplatin groups were intraperitoneally injected with 0, 5, and 10 mg/kg body weight (bw) cisplatin, twice
per week for four successive weeks, respectively.

Results: Cisplatin decreased the body weights of treated mice. Serum levels of superoxide dismutase and
glutathione peroxidase were significantly reduced in the 5 and 10 mg/kg dose, twice weekly for 4 weeks treatment;
in contrast, there was a significant increase of lipid peroxidation. 5 and 10 mg/kg bw of cisplatin caused
histopathological damage in the cerebellum tissue characterized by disruption, disorganization, and degeneration
with dense pyknotic nuclei of the granular cells. Ultrastructurally, in the cortical region of the cerebellum, the
Purkinje cells showed irregular pyknotic nuclei with indistinct nucleoli, cytoplasmic vacuolation, marked indentation
of the nuclear membrane, dilatation of the endoplasmic reticulum, and breakdown and disappearance of
mitochondrial cristae. Moreover, the molecular layer showed cellular necrosis and an increased number of
lysosomal particles. The myelinated nerve fibers showed degenerative areas distinct by splitting, disruption, and loss
of the lamellar pattern of the myelin sheath.

Conclusion: These findings provide a confirmed foresight that the in vivo potential treatment of mice with
cisplatin induces cerebellum deficits and impairment in neuronal histology. The identified mechanism which evokes
neurotoxicity is oxidative stress-dependent status. This mechanism is pharmacologically boosted by great
production of free radical reactive oxygen species.
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Background

Accidentally, Rosenberg in 1965 discovered cisplatin as a
cell division inhibitor (Rosenberg, Vancamp, & Krigas,
1965). During 1969, cisplatin was exhibited and ex-
plained for its anticancer property in animal patterns
(Rosenberg, Vancamp, Trosko, & Mansour, 1969). After-
wards, in chemotherapeutic regimens, cisplatin came to
be the mainstay usually used in treating different pat-
terns of malignancies, for instance, esophageal, cervical,
testicular, and ovarian cancer and more (Crona et al,,
2017). Besides, in the synergistic regimen, cisplatin
demonstrated lesser toxicity and a high therapeutic rate
(Einhorn, 2002).

An increasing body of clinical evidence indicates that a
low dose of cisplatin induces 30% nephrotoxicity in
adults and 70% in pediatric states (Un et al, 2020).
Unfortunately, the higher accumulated doses of cisplatin
also result in nephrotoxicity, neurotoxicity, and cardio-
toxicity (Chowdhury, Sinha, Banerjee, & Sil, 2016; Li
et al,, 2017; Steeghs, de Jongh, Sillevis Smitt, & van den
Bent, 2003). Also, in higher cisplatin dose chemotherapy,
other severe adverse effects such as myelosuppression,
ototoxicity, and nausea were reported (Brock, Knight, &
Freyer, 2012; Kim et al, 2015). Likewise, hepatotoxicity
is a risk factor concomitant with cisplatin dose in cancer
chemotherapy (Pezeshki et al., 2017).

Many reported data of cisplatin-related neurotoxic
effects were recorded. Besides, the cerebellum is particu-
larly vulnerable to intoxication and poisoning, especially
the cerebellar cortex and Purkinje neurons (Manto,
2012). On administering to experimental animals, cis-
platin induces cytotoxicity of the cerebellar cortex
through apoptosis of the proliferating granular cells and
deterioration of migrating and differentiating Purkinje
cells (Pisu et al., 2004). Moreover, it has shown that
cisplatin induces in vitro death of cerebellar granule cells
including the morphological and molecular alterations
during the cerebellum development in postnatal rats
(Wick et al., 2004). Also, the accumulated cisplatin in
the neurites causes axonopathy and degeneration of
myelinated fibers along with marked remyelination and
layer demyelination (Yoon et al., 2009).

Among the cisplatin-implicated adverse effects are free
radical-mediated oxidative stress and subsequent
depletion of neural antioxidant enzymes (Yadav, 2019).
Aside from an excessive production of reactive oxygen
species, apoptosis and mitochondria dysfunction are also
involved in the acceleration of DNA damage and trigger
caspase activation cisplatin-induced neural toxicity in
the peripheral nerve system (Maj, Ma, Krukowski, KN
Kavelaars, & Heijnen, 2017). Another cytotoxic mechan-
ism showed that cisplatin or metabolites can interact
with a variety of cellular organelles such as the cell mem-
branes, endoplasmic reticulum, nucleus, and lysosomes
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resulting in cellular necrosis and apoptosis (Gatti,
Cassinelli, Zaffaroni, Lanzi, & Perego, 2015). The per-
ipheral neurotoxicity is a characteristic clinical aspect
sign induced by cisplatin in lung tumor (Sharawy,
Laila, & Youakim, 2015).

Objective

Concerning the deleterious effects of cisplatin on neural
tissue, few studies were focused on the assessment of
cisplatin’s effect on the cerebellar tissue which is still not
fully elucidated. Experimentally, due to the evidence that
the cerebellum is one of the highly vulnerable body parts
to intoxication and most likely to be influenced in the
neural tissue, it was our superior choice for the present
study.

Methods

Chemicals

Cisplatin® (MERCK, Oncoten Pharma Production
GmbH, Rodleben, Germany) was purchased from the
pharmacy. Cisplatin was freshly prepared by dissolving
in 0.9% saline every week.

Experimental animals

An overall number of 45 male albino mice (average
weight 30-35g, age 90-100 days) were utilized in the
present study. Male mice were randomly collected from
stock kept on the animal house of the Faculty of
Agriculture, Alexandria University, Alexandria, Egypt.
For 1week of acclimation, five mice per stainless steel
cage were kept at a suitable room temperature of 25 +
2°C, with 60-65% humidity, a natural photoperiod of
12h of light and 12h of darkness, and free access to
food and drinking water. All the present methodological
procedures, laboratory animal handling, caring, weighing,
dosing, anesthesia, and dissections were executed according
to the local committee of Institutional Animal Care and Use
Ethics (ACUE), Faculty of Science, Alexandria University,
Alexandria (Registration No. AU 04-19-10-21-3).

Experimental design

Male mice were randomly divided into two cisplatin
groups and one negative control group (15mice/each).
Mice in the negative control group (GI) were intraperi-
toneally injected with 0.2 ml/kg of 0.9% saline. Mice in
group II (GII) were intraperitoneally injected with 5 mg/
kg bw cisplatin dissolved in 0.9% saline. Mice in group
III (GIII) were intraperitoneally injected with 10 mg/kg
bw cisplatin dissolved in 0.9% saline. The experimental
protocol was carried out twice/week, for four consecu-
tive weeks. All mice were administered with an equal
volume of cisplatin and/or saline (0.2 ml). This protocol
was applied in accordance with the investigated neuro-
toxic dose (Akman et al., 2015).
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Experimental weights

After 24 h of post-saline or post-cisplatin dose (day 29),
the body weight of male mice was recorded, and there-
after, the body weight change (%) was estimated.

Collection and preparation of blood, serum, and brain

At the end of the elapsed experimental time, all cisplatin
and control mice were weighed for the final weight.
Immediately before anesthesia and dissection, blood
samples were collected from the orbital venous plexus
bleeding of the eye. The animal is stuffed with the
thumb and forefinger of the non-dominant hand, and
the skin around the eye is pulled taut. A capillary is
inserted into the medial canthus of the eye (30° angle to
the nose). Slight thumb pressure is enough to puncture
the tissue and enter the plexus/sinus. Once the plexus/
sinus is punctured, blood will come out through the
capillary tube (Parasuraman, Raveendran, & Kesavan,
2010). Thereafter, mice were anesthetized by intraperito-
neal injection with a mixture of ketamine hydrochloride
(99.0%) and xylazine hydrochloride (99.0%) solution (1
ml/kg body weight of 1:1) marketed for use in laboratory
research animals (Cat. No. K-113, Sigma-Aldrich Corpor-
ation, USA). Thereafter, the mice were then killed by cer-
vical dislocation and the blood samples were collected; the
serum was isolated by clotting for 30 min and centrifuged
at 3000 rpm for 15 min at 4 °C and then maintained at -
20°C. On dissection, the brain was collected and washed
with normal saline 0.9% for removal of blood, except for 5
mice for DNA analysis from each group.

Serum biochemical analysis

Aliquots of sera were used for measuring the content of
superoxide dismutase (SOD) enzyme and glutathione
peroxidase (GPx) antioxidative enzymes using colouri-
metric methodology as advised by commercial kits
(Reardon & Allen, 2009; Zelko, Mariani, & Folz, 2002),
while the assay of lipid peroxidation content was done
through the determination of the level of malondialde-
hyde (MDA) production following the thiobarbituric
acid method (Ermis et al., 2004).

DNA analysis

DNA assay for the brain tissue of 5 mice of both experi-
mental and control groups was performed using the
method of Saad, Youssef, and Elshennawy (2009). DNA
(G1N70) was isolated from the brain tissue using GenE-
lute™ kits from Sigma-Aldrich, and then the DNA is
solubilized in TE buffer (T9285). Two nanograms of the
nucleic acid samples was mixed with 3 pL of the loading
buffer. The samples were carefully loaded into the wells
using pipettes with a suitable marker containing nucleic
acid fragments of various sizes. The dye front was
tracked using Orange G. After electrophoresis, the gel
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was transferred to a UV transilluminator and the image
of the gel was acquired. The samples will appear as
bright bands. After the run, a fluorescence image of the
gel was acquired.

Histopathological methods

On the spot, all brains of mice were cut into small
pieces. According to the standard protocol, these small
pieces of the brain cerebellum were fixed in neutral buff-
ered formalin (10%) and embedded in paraffin wax.
Five-micrometer slices of neutral formalin-fixed and
paraffin-embedded tissues of the cerebellum were rou-
tinely cut by a microtome. The first step in performing
paraffin sections is removing the paraffin wax. After
thorough de-waxing, the slide is passed through several
changes of alcohol to remove the xylene and then thor-
oughly rinsed in water. Thereafter, the slides are stained
with hematoxylin and eosin (Bancroft & Gamble, 2002).
For routine histopathology diagnosis, stained slides were
examined using an Olympus B50X microscope.

Ultrastructural methods

Tiny specimens of the cerebellar cortex of both control
and cisplatin-treated mice were immediately fixed in 2%
4F1G and rinsed in 0.1 M phosphate buffer at (pH = 7.4,
4°C) for 1h. Thereafter, they were post-fixed with 1%
buffered osmium tetroxide (OsO4) for 1-2h at 4°C;
then, the specimens were washed several times with
phosphate buffer for 40 min and dehydrated in ascend-
ing concentrations of ethyl alcohol. Tissue specimens
were treated with propylene oxide and embedded in a
mixture of 1:1 of Epon-Araldite and later in a pre-dried
gelatine capsule (dryness at 37°C oven for 1h before
use). Polymerization was done in the oven at 65°C for
24 h. Ultrathin sections were cut with a glass knife on
LKB ultramicrotome, mounted on 200-mesh naked cop-
per grids, and double-stained with uranyl acetate and
lead citrate (Hayat, 2000). Ultrathin sections were
inspected under a JEOL 100CX transmission electron
microscope (Electron Microscope Unit, EMU, Faculty of
Science, Alexandria University, Alexandria, Egypt).

Statistical analysis

Statistical analysis for all data was done using the SPSS
software package version 17.0, and the results were
expressed as the mean +* standard deviation. The data
were analyzed using a one-way analysis of variance
(ANOVA). All tests were carried out at a significant level
of probability value P < 0.05. Further, analyses of the
data were performed with the least significant difference
(LSD) to determine which sample was significantly dif-
ferent from the control.
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Results

Cisplatin and body weights

At the end of 4 weeks and depending on dose response,
5 and 10mg/kg bw cisplatin caused a significant de-
crease in body weights versus control mice (data not
shown).

Cisplatin and oxidative stress

As shown in Fig. 1a, b, cisplatin was capable of influen-
cing the antioxidant enzymes in the blood and also of
inducing free radical output, which are in turn the main
primary markers of oxidative stress. Both SOD and GPx
(Fig. 1a), which are an index of reactive oxygen species
generation, were significantly decreased in the sera of 5
mg/kg bw and 10 mg/kg bw cisplatin-treated mice. Also,
the MDA, which is an indication of lipid peroxidation
(LPO), was significantly increased in the sera of mice
that received 5 and 10 mg/kg bw cisplatin (Fig. 1b).

DNA analysis

The gel electrophoresis assay of the genomic DNA ex-
tracted from brain tissues of mice treated with the 5 mg/
kg bw and 10 mg/kg bw cisplatin (Fig. 2; lanes B, C and
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Fig. 1 a Activities of superoxide dismutase (SOD) and glutathione
peroxidase (GPx). b Levels of lipid peroxidation and MDA in serum
of mice intraperitoneally injected with 5 and 10 mg/kg bw cisplatin
twice/week for 4 weeks. Data are expressed as mean + SD. N = 10
mice. *Significant differences at values of P < 0.05
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Fig. 2 Gel electrophoresis photograph showing the genomic DNA
of the brain of mice administered with 5 and 10 mg/kg bw cisplatin.
Lane A, control. Lanes B and C, 5 mg/kg bw cisplatin. Lanes D and E,
10 mg/kg bw cisplatin. Lane M, DNA marker

lanes D, E respectively) showed intact bands of genomic
DNA (i.e., absence of degradation), compared to the
control (Fig. 2, lane A).

Cisplatin and neuro-histopathology

Histopathological alterations of the cerebellar cortex of
5 mg/kg bw cisplatin-treated mice showed an assessment
of neural injury as shown in Fig. 3. Cisplatin induced
mild disorganization of the monolayer arrangement of
Purkinje cells, resulting in loss of the characteristic
“flask-shaped” pattern. Most of the Purkinje cells have
marked irregular outlines, and their nuclei were hardly
identified (Fig. 3c, d) compared with the control cortex
(Fig. 3a, b). The granular cells were accumulated in a
clumping manner and contained irregular dark nuclei
(Fig. 2c, d), while in 10mg/kg bw cisplatin-treated
group, many highly vacuolated cells of the molecular
layer of the cerebellar cortex were visualized (Fig. 3e, f).
The Purkinje cells were disorganized and irregular in
shape, showing severe vacuolation of pyknotic nuclei.
Besides, the granular cells showed a multilayer dispos-
ition of Purkinje cells, and a halo of empty spaces ap-
peared around most of the Purkinje cells. Their nuclei
were hardly identified (Fig. 3e, f).

Mild signs of ultrastructural changes in the cerebellar
cortex of mice that received 5mg/kg bw cisplatin were
seen. Large areas of mossy fibers accompanied by a dis-
ruption in the mitochondrial cristae were discriminated
in the molecular layer (Fig. 4c, d) compared with the
control (Fig. 4a, b). Present observations also indicated
that various changes were observed which indicate and
characterize neurodegeneration after the 5mg/kg bw
cisplatin dose. The most obvious alterations were the
shrinkage of Purkinje cells, irregular nuclei with indistinct
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Fig. 3 a—f Light micrograph of sections of the cerebellar cortex of the cerebellum. a Control mice showing the folium (arrows) of the gray matter. H&E,
% 100 (bar = 200 um). b Semithin section showing the flask-shaped of Purkinje cells (P). Toluidine blue, x 1000 (bar = 20 um). ¢ Mice intraperitoneally
injected with 5 mg/kg bw cisplatin showing shrunken Purkinje cells (P) and halo of empty spaces around the Purkinje cells (arrows), x 400 (bar = 50 pm).
d The nuclei of some Purkinje cells (P) are hardly identified. Note the dense nuclei of the granular cells (arrows). Toluidine blue, x 1000 (bar = 20 ym). e
Mice treated with 10 mg/kg bw cisplatin showing deposition of the Purkinje cells (P) surrounded by a highly vacuolated cytoplasm (arrow), x 400 (bar =
50 um). f Disorganization of the Purkinje cells with hardly identified nuclei (arrows). Toluidine blue, x 1000 (bar = 20 um)

nucleoli, dilatation of the endoplasmic reticulum, loss of
mitochondrial cristae, fragmentation of the rough endo-
plasmic reticulum giving small, fragmented rods, and a
hypertrophied Golgi zone (Fig. 4c, d).

At the 10 mg/kg bw cisplatin protocol, different events
of necrosis among the cells of the molecular layer were
observed and exhibited along with an increased number
of cytoplasm lysosomal particles. These neurodegenera-
tive changes were associated with disorganization of nu-
clei of Purkinje cells, leaving a nuclear ghost, destruction
of mitochondrial cristae, and marked dilatation of the
cisternae of the rough endoplasmic reticulum. Moreover,
in the granular neurons, the myelinated axons exhibited
numerous areas of degeneration characterized by disrup-
tion, splitting, and loss of the lamellar compact structure

of myelin sheath fibers (Fig. 5a, ¢) compared with the
control (Fig. 4a, b). In contrast, the granular cells in the
granular layer were still intact.

Discussion

Cisplatin is a global chemotherapeutic drug with definite
nephrotoxicity, neurotoxicity, and hepatotoxicity. Because
of the prevalence of solid tumor treatment, cisplatin has
become extensively used and prescribed on a large scale
(Attia, Matta, & Khaliffa, 2015; Paksoy et al., 2011; Ustiin,
Oguz, Seker, Korkaya, & H., 2018). Animal exposure to
cisplatin has been confirmed to cause neural injury. How-
ever, the detailed investigations behind the neural damage
for the cerebellum remain insufficient. Therefore, we con-
ducted this study based on histopathology and oxidative
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layer. x 5000 (bar = 10 um)

Fig. 4 a-d Electron micrographs of a section of the cerebellar cortex of the cerebellum. a, b In control mice showing the nucleus (N) of Purkinje
cell (P), the nuclei of the granular (g) layer, and Golgi Il cells. ¢, d In mice intraperitoneally injected with 5 mg/kg bw cisplatin showing the
nucleus (N) of a shrunken Purkinje cell (P). Notice the splitting of the myelin sheath in some areas of myelinated fibers (arrows) in the molecular

stress assay to further assess the toxicity of cisplatin on
mice cerebellum and to explore the potential histopath-
ology and ultrastructure underlying the damage.

Firstly, histopathological findings of mice cerebellum
were assessed to confirm the damage to the cerebellar
tissues. Consistent with previous studies (Akman et al.,
2015), exposure to cisplatin was found to induce cellular
hamper and deleterious changes in cerebellar tissues.
We then measured the serum antioxidant enzymes of
each group, which revealed a decrease of enzymatic ac-
tivities upon cisplatin treatment, indicating the impair-
ment of biochemical functions of subcellular organelles
of neurons (Carozzi, Marmiroli, & Cavaletti, 2010).

The underlying mechanisms were mostly attributed to the
high cisplatin toxic effect on body weight loss in chemother-
apy treatment which may be due to the acceleration of water
elimination by urine associated with continuing dehydration
(Tikoo, Bhatt, Gaikawad, Sharma, & Kabra, 2007) or the re-
duction in food ingestion because of gastrointestinal malaise
(Atessahin, Yilmaz, Karahan, Ceribasi, & Karaoglu, 2005).
Gastrointestinal malaise may also reflect inhibition of appe-
tite desire and raise the rate of catabolism and disturbance
of food digestion and water assimilation (Hassan, Chibber,
& Naseem, 2010; Perse & Veceric-Haler, 2018).

Previously, it was concluded that cisplatin induces ex-
cessive oxidative stress, enhances apoptosis (Kitik,

Gokee, Kiitiikk, & Cila, 2019; Mi et al., 2018), and dam-
ages the blood—brain barrier in the brain (Blanchette &
Fortin, 2011). In the present study, we performed an oxi-
dative stress analysis of mice serum which identified sig-
nificantly depleted SOD and GPx with an elevation of
lipid peroxidation levels in mice brain treated with 5 and
10 mg/kg bw cisplatin. Besides, the deteriorative alter-
ations are induced mostly by oxidative stress exerted by
cisplatin, suggesting that cisplatin promotes oxidative
stress through the depletion of antioxidant activities
(Yilmaz et al,, 2004, 2005). Zhu et al. (2016) reported
that oxidative stress exerted by cisplatin also enhances
the permeability of the mitochondrial membrane liberat-
ing pro-apoptotic proteins (Bax, Bak), which in turn
stimulate several caspases concerned with apoptosis.

Further enrichment analysis of antioxidant activities
showed that multiple biochemical processes were mark-
edly enriched in terms of excessive free radical produc-
tion, which is highly consistent with the cellular and
subcellular changes, indicating the deterioration of
neural structures as described in the present results. Sev-
eral studies have reported the correlation between cis-
platin exposure and free radical generation-promoting
effects (Santos et al., 2008; Xue et al., 2020).

Other important enriched pathways include cell death
and cellular necrosis, which have been proven to be
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Fig. 5 a—c Electron micrographs of a section of the cerebellar cortex of mice treated with 10 mg/kg bw cisplatin showing a shrunken Purkinje cell (P)
with pyknotic nucleus (N). Notice the dilatation in rER and focal areas of splitting myelin sheath of the nerve in ¢ (arrows). x 5000 (bar = 10 um)
.

indispensable for cell injury (Dundar et al., 2016) and
may help explain the neuronal degeneration after cisplatin
exposure. The apoptosis pathway was found to be signifi-
cantly enriched as well, which further confirms the
present ultrastructural findings of increased apoptosis in
the cisplatin-treated brain (Karimi, Amiri, Khalatbary, A.
R. Mohammadi, & Hosseinimehr, 2019). Apart from oxi-
dative stress and as a cytotoxic agent, cisplatin can trigger
cell death during chemotherapy-induced toxicity (Wang,
Wu, Fang, Huang, & Zhu, 2019), resulting in activation of
signaling of apoptotic pathways which are involved in the
pathogenesis of brain injury (Zhang et al., 2015).

The ultrastructure level showed a significant neurode-
generative change in the cisplatin group, suggesting that
subcellular apoptosis of neurons may take part in the
progression of the histopathological changes described
in the present results. Furthermore, in the present find-
ings, the evident cellular death and necrosis could funda-
mentally be because of the DNA breaking in the
neurons following cisplatin exposure and/or arrest of the
cell cycle (Attia, Kheirallah, & Khalifa, 2014; Velma,
Dasari, & Tchounwou, 2016). The findings of destructive
mitochondrial cristae, vacuolization, and dilated cister-
nae of the rough endoplasmic reticulum along with cell
death in terms of splitting and loss of the lamellar

pattern of myelinated axons and disorganization of nu-
clei of Purkinje cells confirm the apoptotic and cytotoxic
effect of cisplatin (Bobylev, Joshi, Barham, Neiss, &
Lehmann, 2018; Podratz et al, 2016). On the other
hand, accumulation of cisplatin, especially in the
neurites, may provide another explanation for neur-
opathy through nuclear DNA damage and corruption
of Schwann cells which are responsible for myelin-
ation development (Brouwers, Huitema, Boogerd, W.
Beijnen, & Schellens, 2009).

The chemotherapy dose of cisplatin is bio-transformed
to active forms, which are the toxic metabolites, by
hydrolyzation  causing mitochondrial  dysfunction
(Trombini et al., 2016). Also, the accumulation of cis-
platin in the mitochondria exerts toxicity mostly through
permanent lysosomal and mitochondrial damage and
perturbation of the integrity of the cytoskeleton (Sendao
et al,, 2006). These active forms are potent that react
with DNA forming intra-strand and inter-strand and
DNA -protein crosslinks blocking cell division and result-
ing in DNA damage and apoptotic death in cancer cells
(Podratz et al., 2011). Previous studies mentioned that
these metabolic bio-transforms can also impair neuronal
function and lead to axon loss and nerve corruption
(Mong, Petrulio, Kaufman, & Wang, 2008).
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Therefore, based on the elevation of lipid peroxidation
disintegration-related processes and the depletion of an-
tioxidative activities, combined with the fact that proper
antioxidants are critically important for the stabilization
and maintenance of brain functions, we suggest that
these agents were involved in cisplatin-induced brain in-
jury and that this speculated mechanism is also present
in cerebellar cells (Wang et al., 2020).

In summary, these findings provide a confirmed fore-
sight into the potential cisplatin-induced neuropathy in
mice cerebellum cells. Cisplatin treatment provokes
cisplatin-induced oxidative stress, as well as dysfunction
of the cellular ultrastructure. Again, the administration
of cisplatin is considered a deleterious chemotherapeutic
strategy since cisplatin induces neural injury.

Conclusion

Undoubtedly, the current investigation demonstrated
that the common use of cisplatin in chemotherapy re-
sults in deleterious neurotoxic effects. Further, cisplatin
induces identifiable alterations in neural histology. The
principal mechanism of the neurotoxicity might be
attributed to the capability of cisplatin to generate free
radicals causing oxidative stress.
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