RESEARCH

Endemism-based butterfly conservation: insights from a study in Southern Western Ghats, India

M. Anto^{1*}, C. F. Binoy¹ and Ignatious Anto²

Abstract

Background: The Western Ghats, a biodiversity hotspot in India harbours a high percentage of endemic species due to its unique and diverse habitats. These species which cannot survive elsewhere due to their specialised habitat requirements are at high risk from climatic and anthropogenic disturbances. The butterfly fauna of the region although well documented has not been investigated intensively at local scales. In this study, we present information on species presence within 10 km \times 10 km grid cells (n= 30; area=3000 km²) of 94 butterfly species in the Western Ghats region. The data on the species distribution within these grids which included three wildlife sanctuaries and four forest divisions was mapped. Indicator analysis was performed in R using multipatt function in indispecies package to determine species associated with sites/site combinations. The corrected weighted endemism indices of the study grids were estimated.

Results: The data collected over a 4-year period comprised of 393 records of 60 endemic species belonging to five families observed along 102 transects. *Troides minos* was the most widespread species occuring in 19 grids. Seventeen species indicative of sites and site combinations were obtained, of which *Cirrochroa thais, Papilio paris tamilana, Papilio helenus daksha, Parthenos sylvia virens and Mycalesis patnia* were significant. The highest corrected weighted endemism index was observed in grid 25 (14.44) followed by grids 24 (12.06) and 19 (11.86). Areas harbouring unique and range restricted species were Parambikulam WLS/TR: Kuthirakolpathy, Pupara, Kalyanathi, Top slip and Muthalakuzhy; Peechi-Vazhani WLS: Ayyapankadu; Thrissur FD: Chakkapara and Vellakarithadam; Nenmara FD: Karikutty, Pothumala and Nelliampathy estate; Vazhachal FD: Poringalkuthu dam, Meenchal and Vazhachal.

Conclusions: The study area which covers 2.14% of the Western Ghats hotspot harbours almost 63.82% of the region's endemic butterfly species making this particular region crucial for butterfly conservation and management. Studying the phylogenetic endemism of the butterflies, identification of microrefugia and testing the mountain geobiodiversity hypothesis with respect to butterflies are the suggested approaches to be adopted for fine-tuning research and conservation of butterflies in this fragile hotspot.

Keywords: Distribution mapping, Indicator species, Endemism index, Biodiversity hotspot

* Correspondence: drmaryanto@gmail.com

¹Research and Post Graduate Department of Zoology, St. Thomas College, Thrissur, Kerala 680001, India

Full list of author information is available at the end of the article

e at the end of the article © The Author(s), 2021 **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons

licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Open Access

Background

The forests in the Kerala region of the Western Ghats, a biodiversity hotbed, have recently been the target of unpredictable monsoons (Mishra et al., 2018). Studies show an increasing trend of extreme rainfall (Roxy et al., 2017) as well as increases in minimum temperature in the Western Ghats and peninsular India (Dash, Nair, Kulkarni, & Mohanty, 2011; Mondal, Khare, & Kundu, 2015). Butterfly migrations of several species of Papilionidae, Nymphalidae and Pieridae have been reported to coincide with the monsoonal system in peninsular India (Bhaumik & Kunte, 2018; Kunte, 2005). Apart from decades of anthropogenic disturbances leading to forest fragmentation (Jha, Dutt, & Bawa, 2000; Menon & Bawa, 1998; Nair, 1991), recent studies have highlighted other detrimental activities like mining, road construction and irrigation projects (Bharucha, 2006).

In the backdrop of increasing habitat degradation, formulation of priorities for conservation in the Western Ghats is challenging. Many approaches may be adopted

but the simplest and most effective would be focusing our attention and action towards reducing the loss of biodiversity based on a framework of vulnerability and irreplaceability (Margules & Pressey, 2000). Subsequently, areas with exceptionally high concentrations of endemic species were prioritised for conservation and the global 'biodiversity hotspot' concept was developed to address this crucial issue (Mittermeier, Myers, Robles-Gil, & Mittermeier, 1999; Myers, 1988, 1990, 2003; Myers, Mittermeier, Mittermeier, da Fonseca, & Kent, 2000). Although hotspots are designated as areas for priority conservation action, the fauna and flora of many hotspots are poorly studied and relevant data are insufficient for effective conservation planning (Mittermeier et al., 2004; Mittermeier, Turner, Larsen, Brooks, & Gascon, 2011). Moreover, it is also likely that true hotspots may go unrecognised due to lack of organised data, biogeographical biases and regional misconceptions (Noss et al., 2015).

In the hotspot analysis whereby 25 areas were identified, the Western Ghats was among the top eight critical regions in terms of endemism and extent of original primary vegetation (Myers et al., 2000) and later designated as 'hyperhot' for conservation prioritisation (Brooks et al., 2002). The number of global hotspots was later expanded to 35 (Mittermeier et al., 2011). The Western Ghats is a 1600 km mountain chain running almost parallel to India's western coast and spread over six states—Gujarat, Maharastra, Goa, Karnataka, Tamil Nadu and Kerala. It includes two biosphere reserves, the Nilgiris Biosphere Reserve (11,040 km²) and the Agasthyamalai Biosphere Reserve (3500 km²). Kerala lies between 8° 18' and 12° 48' N latitude and 74° 54' and 77° 12' E longitude in the south-west region of the Indian peninsula between the Arabian sea and the Western Ghats (Fig. 1).

Topographic heterogeneity (from sea level to 2695 m at its highest point) and a strong precipitation gradient (annual rainfall of < 50 cm in eastern valleys to > 700 cm along western slopes) has given rise to remarkable diversity in flora and fauna. The forests in the state are classified into wet evergreen, semi-evergreen, moist deciduous, dry deciduous and thorn forest types (Champion & Seth, 1968). Studies by Reddy, Jha, & Dadhwal (2016) on the extent, distribution and changes in forests of the Western Ghats reveal a net loss of 35.3% of forest

No.	Grid	Location	Transect	Longitude	Latitude
1	1	Thrissur Division	Kuranchery	76.23205	10.62663
2	1	Thrissur Division	Mangad	76.18482	10.68173
3	1	Thrissur Division	Mudathikode	76.19416	10.64304
4	1	Thrissur Division	Tiruttiparamba	76.21115	10.62360
5	1	Thrissur Division	Velur	76.15370	10.64022
6	1	Thrissur Division	Kiralur	76.16385	10.61472
7	1	Thrissur Division	Ottupara	76.25026	10.66278
8	1	Thrissur Division	Attatra	76.19828	10.67283
9	2	Thrissur Division	Poomala dam	76.24048	10.60182
10	2	Thrissur Division	Kottekad	76.19345	10.57240
11	2	Thrissur Division	Pambur	76.20394	10.56038
12	2	Thrissur Division	Mukkattukara	76.25250	10.53585
13	2	Thrissur Division	Peringavu	76.21604	10.54587
14	2	Thrissur Division	Kolazhi	76.22042	10.57027
15	3	Thrissur Division	Chelakkara	76.35251	10.68421
16	3	Thrissur Division	Karumathara	76.28095	10.64745
17	3	Peechi-Vazhani WLS	Vazhani dam	76.30601	10.63308
18	3	Peechi-Vazhani WLS	Kunnamkadu	76.31664	10.63913
19	3	Peechi-Vazhani WLS	Kadamkandachal	76.32311	10.63853
20	3	Peechi-Vazhani WLS	Valiyathodu	76.30891	10.64841
21	3	Peechi-Vazhani WLS	Ettachola	76.30917	10.64121
22	3	Peechi-Vazhani WLS	Ayyapankadu	76.31289	10.64147
23	3	Peechi-Vazhani WLS	Vellapara	76.32895	10.62220
24	4	Peechi-Vazhani WLS	Vellanipacha mala	76.33732	10.58139
25	4	Thrissur Division	Mudikode	76.30584	10.55354
26	4	Thrissur Division	Pattikad	76.33561	10.54970
27	4	Thrissur Division	Kanara	76.33492	10.52959
28	4	Thrissur Division	KFRI	76.34466	10.53252
29	4	Thrissur Division	Canal	76.35319	10.53498
30	5	Thrissur Division	Marotichal	76.35786	10.47914
31	5	Thrissur Division	Moorkinikkara	76.27925	10.51414
32	5	Thrissur Division	Kainoor	76.30233	10.49713
33	5	Thrissur Division	Puthur	76.27932	10.48710
34	5	Thrissur Division	Mannamangalam	76.34639	10.50081
35	6	Chalakudy Division	Velupadam	76.35910	10.43505
36	6	Chalakudy Division	Mupliyam	76.35094	10.39540
37	6	Chalakudy Division	Kundukadavu	76.30326	10.38947
38	6	Chalakudy Division	Kodakara	76.31415	10.37230
39	7	Thrissur Division	Pazhayannur	76.42017	10.67873
40	7	Thrissur Division	Elanad	76.39383	10.61718
41	8	Peechi-Vazhani WLS	Peechi dam	76.37174	10.53201
42	8	Peechi-Vazhani WLS	Vellamkandapara	76.49185	10.48322
43	8	Peechi-Vazhani WLS	Kallichempara	76.38353	10.50249
44	9	Peechi-Vazhani WLS	Vengapara	76.40705	10.48101

Table 1 Geographic coordinates of transects sampled in 30 grids of study area

No.	Grid	Location	Transect	Longitude	Latitude
45	9	Thrissur Division	Vellakarithadam	76.36928	10.49332
46	9	Thrissur Division	Chakkapara	76.38664	10.49008
47	10	Chalakudy Division	Vellikulangara	76.37124	10.38481
48	10	Chalakudy Division	Kanakamala	76.36602	10.35835
49	11	Chalakudy Division	Pariyaram	76.37166	10.31984
50	11	Chalakudy Division	Ezhattumugham	76.43271	10.28292
51	11	Chalakudy Division	Melur	76.85444	10.29543
52	11	Chalakudy Division	Nalukettu	76.39679	10.27311
53	12	Chinmoni WLS	Virakkuthodu	76.45117	10.44045
54	12	Chinmoni WLS	Kavala	76.00000	10.45117
55	13	Chinmoni WLS	Ollakarakavu	76.46475	10.46725
56	13	Chalakudy Division	Check dam	76.25777	10.48728
57	13	Chalakudy Division	Anapathan	76.44871	10.35522
58	14	Chalakudy Division	Thumburmuzhi	76.45114	10.30532

 Table 1 Geographic coordinates of transects sampled in 30 grids of study area (Continued)

area from 1920 to 2013. Endemism in butterflies is closely linked to the endemism of their host plants. The Western Ghats harbours 330 species out of Indian butterfly fauna of 1501 species. Of these, 37 species are narrow endemics found only in the Western Ghats and 23 species are endemic to Sri Lanka as well (Gaonkar, 1996). Endemism and species richness are widely used indicators of conservation value and an index combining both has been calculated and mapped at regional, continental and global scales (Crisp, Laffan, Linder, & Monro, 2001; Kier & Barthlott, 2001; Kier et al., 2009; Venevsky & Venevskaia, 2005). However, such studies at local scales (less than 5000 km²) are still scarcely seen. As a result of detailed analyses of Australian flora, Crisp et al. (2001) concluded that the corrected endemism index is a useful method to detect centres of endemism using species-in-grid-cell data.

Studies in the last decade indicate that microrefugia may be formed due to topographic variations at scales of metres (Dobrowski, 2011) as well as local influences (De Frenne, Rodríguez-Sánchez, Coomes, et al., 2013) and that these effects are not reflected in GIS models of climate change (De Frenne et al., 2013; Keppel et al., 2017). However, most of these studies are based on flora (Bátori et al., 2017; Keppel et al., 2017; Noss, 2013) and mammals (Camacho-Sanchez et al., 2018). In a study of bush frogs in the Western Ghats, Vijayakumar, Menezes, Jayarajan, & Shanker (2016) highlighted the evolutionary significance of massifs which harbour unique refugia due to steep topographical and environmental shifts. Thus, protection of refugia resulting from mountain topography and climatic stability which buffers lineages against extinction is the current trend as it assures future protection (Klein et al., 2009; Mosblech, Bush, & van Woesik, 2011; Stewart, Lister, Barnes, & Dalén, 2010). Gaonkar (1996) details the state-wise distribution of the butterflies of the Western Ghats and Kunte (2008) delineated their distribution within the four zones whilst assigning conservation values to species.

In this context of impending challenges both biotic and abiotic to the forest ecosystems in the Western Ghats, we venture to ask the key question—Can endemic butterflies be used as indicators for conservation management at local scales in the Western Ghats hotspot? In this study, we have mapped the distribution of endemic butterfly species in an area of 3000 km² in the central region of the Kerala part of the Western Ghats and calculated the endemic richness index of various grids of the study area. We expect that the sampling of endemic butterfly species at this microscale level will help detect microrefugia and unique habitats in this fragile hotspot. The indicator species occurring in the study area were identified using the R software.

Methods

The study was carried out in the central region of the Kerala part of the Southern Western Ghats which included three wildlife sanctuaries: Peechi-Vazhani wildlife sanctuary (Peechi-Vazhani WLS), Chinmony wildlife sanctuary (Chinmony WLS), Parambikulam wildlife sanctuary/tiger reserve (Parambikulam WLS/TR) and four forest divisions: Nenmara forest division (Nenmara FD), Vazhachal forest division (Vazhachal FD), Thrissur forest division (Thrissur FD) and Chalakudy forest division (Chalakudy FD). The study area was divided into 10 km × 10 km grids and a total of 30 grids were obtained (Fig. 2). In each grid cell, ten transects were covered over the study period and the length of transects in the different grids ranged between 800 m and 1000 m.

99 14 Chalakuty Dvision Kamapuaha 76.3948 10.29272 60 15 Nenmata Dvision Sccahakundu ////////////////////////////////////	No.	Grid	Location	Transect	Longitude	Latitude
61 15 Nerman Division Forthundu 76.61980 103382 61 15 Nerman Division Secharlundu 76.69932 1044224 63 16 Nerman Division St. George church 76.6737 1050333 64 16 Nerman Division Barkarty 76.6747 1053374 65 16 Nerman Division George church 76.6747 1053374 66 16 Nerman Division George church 76.6747 103374 67 17 Chstikky Division Muropalan 76.6347 103374 68 17 Vazinckol Division Kornakuzii 76.5346 103274 70 18 Vazinckol Division Kornakuzii 76.4349 103070 71 18 Vazinckol Division Kornakuzii 76.5346 10.00777 72 18 Nermara Division Kollagode 76.6347 10.0077 73 19 Nermara Division Kollagode 76.6347 10.0376<	59	14	Chalakudy Division	Kanampuzha	76.33498	10.29722
61 15 Nenmara Division Secharkundu 7669820 10.4224 62 16 Nenmara Division Fot Logard 766937 10.3033 64 16 Nenmara Division Fot Got Part 766737 10.3337 65 16 Nenmara Division Generland fam 76.67407 10.3347 64 17 Chalakudy Division Karkany 76.67407 10.3344 68 17 Variachal Division Kuduvanchal 76.35767 10.3344 69 18 Variachal Division Kuduvanchal 76.35767 10.3032 71 18 Variachal Division Konnakuzii 76.35767 10.3017 72 18 Variachal Division Kolengade 76.3347 10.9017 73 19 Nenmara Division Kolengade 76.69337 10.9917 74 19 Nenmara Division Kulakuziy plant 76.69337 10.9917 75 20 Nenmara Division Kulakuziy plant 76.69337 <td>60</td> <td>15</td> <td>Nenmara Division</td> <td>Pothundi dam</td> <td>76.62190</td> <td>10.53865</td>	60	15	Nenmara Division	Pothundi dam	76.62190	10.53865
62 16 Nenmaa Division Scherrige church A6.6797 10.80332 63 16 Nenmaa Division Scherrige church A6.6797 10.30373 65 16 Nenmaa Division General Church 76.67407 10.33673 66 16 Nenmaa Division General Church 76.5204 10.8840 67 17 Chabikudy Division Churpa Machana 76.5204 10.8840 68 17 Varbachal Division Kornskuch 76.53673 10.3052 70 18 Varbachal Division Kornskuch 76.53546 10.2017 71 18 Varbachal Division Kornskuch 76.63347 10.3052 73 19 Nenmaa Division Kollangade attriat 76.63347 10.3072 74 19 Nenmaa Division Kollangade attriat 76.63347 10.3072 75 21 Parambikulam WLS Machalaudzy 76.63347 10.3024 76 22 Varbachal Division Kornakuzhipaan </td <td>61</td> <td>15</td> <td>Nenmara Division</td> <td>Seetharkundu</td> <td>76.69860</td> <td>10.54274</td>	61	15	Nenmara Division	Seetharkundu	76.69860	10.54274
64 16 Nenmara Division St. Garge church 76.737 10.5033 64 16 Nenmara Division Pulay para 76.7477 10.5037 65 16 Nenmara Division Karkary 76.7477 10.5367 66 16 Nenmara Division Greenland farm 76.2323 10.5568 67 17 Chalkudy Division Itrumpupalam 76.35678 10.30216 68 17 Warbachal Division Itrumpupalam 76.35678 10.30216 71 18 Warbachal Division Kalengode 76.3747 10.30217 72 18 Varbachal Division Kalengode 76.63946 10.20217 73 19 Nenmara Division Kalengode 76.63946 10.20217 74 19 Nenmara Division Nellamgatry statue 76.66888 10.39424 75 21 Parambikulam MLS Machabacha 76.1380 10.39537 75 21 Parambikulam MLS Machambaba 76.654	62	16	Nenmara Division	Pothumala	76.66952	10.46523
64 16 Nennara Division Pulaya para 76.67873 10.53073 65 16 Nennara Division Greenand farm 76.72923 10.53074 66 16 Nennara Division Greenand farm 76.72923 10.53074 67 17 Chalakud Division Inmugalan 76.26443 10.33074 68 17 Varbachal Division Kornakuch 76.36474 10.30352 70 18 Varbachal Division Kornakuch 76.53493 10.30179 71 18 Varbachal Division Kollengode 76.53493 10.20151 73 19 Nennara Division Blavenchery 76.5343 10.39172 74 19 Nennara Division Blavenchery 76.6351 10.39172 75 20 Nennara Division Blavenchery 76.63531 10.39172 75 21 Parambikulam WLS Crisomana 76.71386 10.39212 76 21 Parambikulam WLS Kranaluchi plast 7	63	16	Nenmara Division	St. George church	76.67397	10.50333
65 16 Nenmara Division Karikatty 76.67407 10.53764 66 16 Nenmara Division Greenland farm 76.2723 10.5588 67 17 Chalakudy Division Hudwarachal 76.27947 10.33572 68 17 Vazhachal Division Krunakuzhi 76.57567 10.33572 70 18 Vazhachal Division Konakuzhi 76.4240 10.2010 71 18 Vazhachal Division Kolengode 76.53696 10.2012 72 18 Vazhachal Division Kolengode 76.65349 10.2012 73 19 Nenmara Division Kolengode 76.65688 10.39474 74 19 Nenmara Division Kolengode 76.65688 10.39424 75 20 Nenmara Division Nedmandur 76.65688 10.39424 74 21 Parambikulam WL5 Madamatur 76.65688 10.39424 74 22 Parambikulam WL5 Kunahuzhipalan 76.55754	64	16	Nenmara Division	Pulaya para	76.67878	10.53075
66 16 Nennara Division Greenland farm 76,2323 10,55685 67 17 Chabiax/p Division Hudwanchal 76,0307 10,3840 68 17 Vachachal Division Irumpupalam 76,33078 10,33403 69 18 Vachachal Division Charps 76,5767 10,30207 71 18 Vachachal Division Konnskuchi 76,6347 10,30207 72 18 Vachachal Division Abirappub 76,63347 10,0027 74 19 Nennara Division Bilenenchey 76,63347 10,0027 75 20 Nennara Division Bilenenchey 76,63347 10,0027 75 21 Parambilulam WLS Methalauzhy 76,6588 10,30407 76 21 Parambilulam WLS Chuomban 76,71386 10,0027 78 21 Parambilulam WLS Kuantanuzhapa 76,6507 10,20535 80 22 Vazhachal Division Fumapara 76,3847	65	16	Nenmara Division	Karikatty	76.67407	10.53764
97 17 Chalakudy Division Muduvarachal 76.62040 10.34840 68 17 Vazhachal Division Turmpupalam 76.57567 10.0352 69 18 Vazhachal Division Kannakuzhi 76.57567 10.0352 70 18 Vazhachal Division Kannakuzhi 76.57567 10.0352 71 18 Vazhachal Division Katharan 76.57567 10.0352 73 19 Nenmara Division Kallengode 76.69516 10.0597 74 19 Nenmara Division Reliampathy estate 76.6958 10.33104 75 20 Nenmara Division Nelliampathy estate 76.6958 10.33920 76 21 Parambikulam WLS Muthalakuzhy 76.6888 10.33920 77 21 Parambikulam WLS Eduvarhanpalam 76.65331 10.432114 81 22 Vazhachal Division Furankuzhipalam 76.6574 10.33820 82 23 Nenmara Division Furankuzhipalam 76.6574 10.35821 84 24 Parambikul	66	16	Nenmara Division	Greenland farm	76.72923	10.55685
68 17 Vazhachal Division Irumpupalam 76,38678 10,57347 69 18 Vazhachal Division Charpa 75,5757 10,30352 70 18 Vazhachal Division Konnskuzhi 76,57567 10,30352 71 18 Vazhachal Division Vazhachal Division Konnskuzhi 76,55946 10,20151 73 19 Nenmara Division Kollengode 76,69916 10,60072 74 19 Nenmara Division Nelliampathy estare 76,65347 10,59170 75 20 Nenmara Division Nelliampathy estare 76,65347 10,39172 76 21 Parambikulam WLS Mcdanchal 76,65831 10,39104 79 21 Parambikulam WLS Kurankuzhipalam 76,65874 10,38551 82 22 Vazhachal Division Fuinyabara Division Fuinyabara Division Fuinyabara 76,65974 10,32114 81 22 Vazhachal Division Fuinyabara 76,65974 10,32114 <td< td=""><td>67</td><td>17</td><td>Chalakudy Division</td><td>Muduvarachal</td><td>76.62040</td><td>10.38440</td></td<>	67	17	Chalakudy Division	Muduvarachal	76.62040	10.38440
69 18 Vazhachal Division Charpa 76,57567 10,30352 70 18 Vazhachal Division Konnakuzhi 76,42740 10,30352 71 18 Vazhachal Division Kalimpilyl 76,55849 10,31719 72 18 Vazhachal Division Kollengode 76,69916 10,60972 74 19 Nenmara Division Kollengode 76,69916 10,60972 74 19 Nenmara Division Kollengode 76,69916 10,60972 75 20 Nenmara Division Nelliampathy estate 76,69353 10,3174 76 21 Parambikulam WLS Medamchal 76,67452 10,39602 77 21 Parambikulam WLS Kurakuzhipalam 76,62681 10,3214 80 22 Vazhachal Division Furakuzhipalam 76,62681 10,3214 81 23 Nenmara Division Furakuzhipalam 76,62691 10,5161 82 24 Parambikulam WLS Kurakuzhipalam 76,62691 10,5161 83 24 Parambikulam WLS Kurakuzhipalam 76,62691 10,5161 84 23 Nenmara Division Chulya dam 76,76690 10,5161<	68	17	Vazhachal Division	Irumpupalam	76.38678	10.57347
70 18 Varhachal Division Konnakuzhi 76,42740 10.30210 71 18 Varhachal Division Varhachal Division Konnakuzhi 76,55946 10.29173 73 19 Nenmara Division Kolengode 76,69916 10.29173 74 19 Nenmara Division Bevenchery 76,63347 10.09173 75 20 Nenmara Division Neliampathy estate 76,69558 10.39424 76 21 Parambikulam WLS Orukomban 76,71366 10.49224 78 21 Parambikulam WLS Medamchal 76,6742 10.39607 79 21 Parambikulam WLS Kurakuzhipalam 76,66881 10.39214 81 22 Varhachal Division Foringakuthu dam 76,66891 10.38281 82 23 Varhachal Division Furupatra 76,66907 10.32144 83 23 Nenmara Division Furupatra 76,76499 10.59766 84 23 Nenmara Division	69	18	Vazhachal Division	Charpa	76.57567	10.30352
11 18 Varhachal Division Varhachal 75 10 103719 72 18 Varhachal Division Athirampilly 7655946 10.29151 73 19 Nenmara Division Kollengode 7669916 10.09970 74 19 Nenmara Division Rellampathy estate 7669538 10.03970 75 20 Nenmara Division Nellampathy estate 7669538 10.9370 76 21 Parambikulam WLS Muthalakuzhy 7666888 10.9370 78 21 Parambikulam WLS Medamchal 7667452 10.38801 80 22 Varhachal Division Poringakuthu dam 7663831 10.32114 81 22 Parambikulam WLS Kurankuzhipalam 7663831 10.3214 82 23 Nenmara Division Cluyar dam 7663831 10.32164 83 23 Nenmara Division Cluyar dam 7676469 10.59764 84 23 Nenmara Division Muthalamzdau	70	18	Vazhachal Division	Konnakuzhi	76.42740	10.30210
72 18 Vazhachal Division Athirampilly 76.55946 10.20151 73 19 Nenmara Division Kallengode 76.69916 10.00972 74 19 Nenmara Division Relwenchery 76.63347 10.5117 75 20 Nenmara Division Nelliampathy estate 76.66588 10.33104 76 21 Parambikulam WLS Orukomban 76.66688 10.39242 77 21 Parambikulam WLS Medanchal 76.671386 10.39281 78 21 Parambikulam WLS Eduvathampalam 76.65268 10.39281 80 22 Parambikulam WLS Eduvathampalam 76.65268 10.39281 81 22 Parambikulam WLS Eduvathampalam 76.65268 10.39281 82 22 Vazhachal Division Fumapara 76.65264 10.39276 83 23 Nenmara Division Fumapara 76.65274 10.39276 84 23 Nenmara Division Muthalauzhipara 76.66292 10.5976 85 24 Parambikulam WLS Kuthiakolpathy 76.8273 10.43622 86 24 Parambikulam WLS Kuthiakolpathy 76.7573 10.3	71	18	Vazhachal Division	Vazhachal	76.58499	10.31719
7319Nenmara DivisionKollengode76.6991610.609727419Nenmara DivisionElavenchery76.6334710.591707520Nenmara DivisionNelliampathy estate76.6595810.331047621Parambikulam VLSMuthalakulary76.6688810.407217721Parambikulam VLSOrukomban76.745210.396077821Parambikulam VLSEzhuvathampalam76.6745210.396077921Parambikulam VLSKurankuzhipalam76.6745210.38618022Vazhachal DivisionPoringalkuthu dam76.6745110.385518122Parambikulam VLSKurankuzhipalam76.6746910.597648223Nenmara DivisionThuapalakuzhipara76.6766910.597668423Nenmara DivisionChuliyar dam76.766910.597868524Parambikulam VLSAnappadi76.766910.597868624Parambikulam VLSKuthirakolpathy76.572310.460528724Parambikulam VLSKuthirakolpathy76.753910.367209025Parambikulam VLSKatrinala76.7649310.367209125Parambikulam VLSKatrinala76.7539110.366899225Parambikulam VLSKatrinala76.7539110.366899426Vazhachal DivisionKenrala76.7533310.366899525Par	72	18	Vazhachal Division	Athirampilly	76.55946	10.29151
14 19 Nenmara Division Elavenchery 76.63347 10.59170 75 20 Nenmara Division Nelliampathy estate 76.69558 10.3104 76 11 Parambikulam WLS Muthalskuzhy 76.66888 10.39424 77 21 Parambikulam WLS Orukomban 76.71386 10.40721 78 21 Parambikulam WLS Ezhuvathampalam 76.67452 10.38021 80 22 Vazhachal Division Poringalkuthu dam 76.63881 10.33214 81 22 Vazhachal Division Furmapara 76.63891 10.33281 82 22 Vazhachal Division Furmapara 76.63745 10.38261 83 22 Vazhachal Division Furmapara 76.63764 10.59766 84 23 Nenmara Division Muthalamada 76.676690 10.59766 85 24 Parambikulam WLS Kuthirakolpathy 76.67670 10.3774 87 24 Parambikulam WLS Sunkar colony 76.7573 10.48622 88 24 Parambikulam WLS Kuthirakolpathy 76.67637 10.3574 90 25 Parambikulam WLS Katimala 76.76737 <td< td=""><td>73</td><td>19</td><td>Nenmara Division</td><td>Kollengode</td><td>76.69916</td><td>10.60972</td></td<>	73	19	Nenmara Division	Kollengode	76.69916	10.60972
75 20 Nenmara Division Nellampathy estate 7669558 10.53104 76 21 Parambikulam WLS Muthalakuzhy 76.66888 10.39424 77 21 Parambikulam WLS Orukomban 76.71386 10.40221 78 21 Parambikulam WLS Medamchal 76.67452 10.39407 79 21 Parambikulam WLS Ezhuvathampalam 76.67460 10.38281 80 22 Vazhachal Division Poringalkuthu dam 76.63881 10.32114 81 22 Vazhachal Division Erumapara 76.69077 10.27635 82 23 Nenmara Division Thavalakuzhipara 76.69077 10.27635 84 23 Nenmara Division Muthalamada 76.69071 10.27635 85 24 Parambikulam WLS Nappadi 76.69071 10.45627 86 24 Parambikulam WLS Sunkam colony 76.7523 10.44806 87 25 Parambikulam WLS Kaitmala	74	19	Nenmara Division	Elavenchery	76.63347	10.59170
7621Parambikulam WLSMuthalakuzhy76.6688810.394247721Parambikulam WLSOrukomban76.713610.402117821Parambikulam WLSEzhuvathampalam76.6745210.396077921Parambikulam WLSEzhuvathampalam76.6289110.321818022Vazhachal DivisionPoringalkuthu dam76.6381110.321148122Vazhachal DivisionErumapan76.6575410.385518222Vazhachal DivisionErumapan76.6907710.276358423Nenmara DivisionChuliyar dam76.7669010.591618523Nenmara DivisionMuthalamada76.7669010.597868624Parambikulam WLSAnappadi76.767710.476398724Parambikulam WLSSunkam colony76.757310.448098925Parambikulam WLSSunkam colony76.757310.448099125Parambikulam WLSRest para76.7683710.368219225Parambikulam WLSKalynathi76.758310.368219325Parambikulam WLSKalynathi76.758310.368219428Parambikulam WLSKalynathi76.758310.368219429Parambikulam WLSKalynathi76.758310.368219425Parambikulam WLSKalynathi76.758310.36821959a ambikulam WLSKalynathi76	75	20	Nenmara Division	Nelliampathy estate	76.69558	10.53104
77 21 Parambikulam WLS Orukomban 76.71386 10.40721 78 21 Parambikulam WLS Medamchal 76.67452 10.39607 79 21 Parambikulam WLS Ezhuvathampalam 76.62680 10.38281 80 22 Vazhachal Division Poringakuthu dam 76.63881 10.32114 81 22 Vazhachal Division Erumapara 76.63754 10.3851 82 22 Vazhachal Division Erumapara 76.69077 10.27633 84 23 Nenmara Division Chulyardam 76.76690 10.59766 85 23 Nenmara Division Muthalamada 76.76690 10.59766 86 24 Parambikulam WLS Anappadi 76.87731 10.45627 87 24 Parambikulam WLS Surkam colony 76.75723 10.44809 89 25 Parambikulam WLS Katimakolpathy 76.75731 10.35714 90 25 Parambikulam WLS Katimala 76	76	21	Parambikulam WLS	Muthalakuzhy	76.66888	10.39424
7821Parambikulam WLSMedamchal766745210.396077921Parambikulam WLSEzhuvathampalam766268010.322818022Vazhachal DivisionPoringalkuthu dam766383110.321148122Parambikulam WLSKurankuzhipalam766575410.385518222Vazhachal DivisionErumapara76.690710.276358423Nenmara DivisionChuliyar dam76.7669010.591618523Nenmara DivisionMuthalamada76.7669010.597668624Parambikulam WLSAnappadi76.8073110.456278724Parambikulam WLSSunkaru colony76.7572310.440998925Parambikulam WLSSurkaru colony76.7573110.363229125Parambikulam WLSKatrinala76.7659010.37149225Parambikulam WLSKatrinala76.7536910.361429225Parambikulam WLSKatrinala76.7536910.366879325Parambikulam WLSKatrinala76.7639110.366879425Parambikulam WLSKatrinala76.7639110.366879526Parambikulam WLSKatrinala76.7639110.366879626Vazhachal DivisionKalyanathi76.7533110.368289726Parambikulam WLSShalyar dam76.7533110.32339827Nenmara DivisionKal	77	21	Parambikulam WLS	Orukomban	76.71386	10.40721
7921Parambikulam WLSEzhuvathampalam76.6268010.382818022Vazhachal DivisionPoringalkuthu dam76.638110.321148122Parambikulam WLSKurankuzhipalam76.6575410.385518222Vazhachal DivisionErumapara76.6807710.276358423Nenmara DivisionChulyar dam76.7649910.591618523Nenmara DivisionMuthalamada76.7669010.597868624Parambikulam WLSNappadi76.8073110.456278724Parambikulam WLSSunkar colony76.7572310.440958925Parambikulam WLSEarth dam76.7657010.37149025Parambikulam WLSKuthirakolpathy76.7536910.361429125Parambikulam WLSKatimala76.7657010.37149225Parambikulam WLSKatimala76.7659310.361429225Parambikulam WLSKatimala76.7659310.361429225Parambikulam WLSKatimala76.7659310.361429325Parambikulam WLSKatimala76.7659310.361429426Vazhachal DivisionKalyanathi76.7583310.3628495Parambikulam WLSShalyar dam76.7583310.32339626Vazhachal DivisionKeenchal76.7583310.32339726Vazhachal DivisionKeenchal <td< td=""><td>78</td><td>21</td><td>Parambikulam WLS</td><td>Medamchal</td><td>76.67452</td><td>10.39607</td></td<>	78	21	Parambikulam WLS	Medamchal	76.67452	10.39607
8022Vazhachal DivisionPoringalkuthu dam76.6388110.321148122Parambikulam WLSKurankuzhipalam76.6575410.385518222Vazhachal DivisionErumapara76.6307710.276358423Nenmara DivisionChuliyar dam76.7646910.591618523Nenmara DivisionMuthalamada76.7669010.597868624Parambikulam WLSAnappadi76.8073110.456278724Parambikulam WLSSurkarn colony76.7572310.448098925Parambikulam WLSSurkarn colony76.7573110.36829125Parambikulam WLSRest para76.7657010.37149225Parambikulam WLSKatrimala76.7639310.36829125Parambikulam WLSKatrimala76.7639310.36829225Parambikulam WLSKatrimala76.7639310.36829325Parambikulam WLSKatrimala76.7639310.366879425Parambikulam WLSKatrimala76.7639310.366899526Parambikulam WLSBamboos76.7639310.368299425Parambikulam WLSSholayar dam76.7639110.3114995Parambikulam WLSSholayar dam76.7639110.311499626Vazhachal DivisionKeenchal76.7639110.313339726Vazhachal DivisionChermanampathy </td <td>79</td> <td>21</td> <td>Parambikulam WLS</td> <td>Ezhuvathampalam</td> <td>76.62680</td> <td>10.38281</td>	79	21	Parambikulam WLS	Ezhuvathampalam	76.62680	10.38281
8122Parambikulam WLSKurankuzhipalam76.6575410.385518222Vazhachal DivisionErumapara76.8339310.459238322Vazhachal DivisionThavalakuzhipara76.6907710.276358423Nenmara DivisionChuliyar dam76.766910.591618523Nenmara DivisionMuthalamada76.7669010.597668624Parambikulam WLSAnappadi76.8292210.453978724Parambikulam WLSKuthirakolpathy76.8073110.456278824Parambikulam WLSSunkam colony76.7572310.448098925Parambikulam WLSSunkam colony76.757310.37149025Parambikulam WLSRest para76.766910.367149125Parambikulam WLSKalimala76.763910.36829225Parambikulam WLSKalimala76.763910.36829325Parambikulam WLSKalimala76.763910.36829425Parambikulam WLSKalimala76.763910.368295Parambikulam WLSKalipanathi76.733310.36329425Parambikulam WLSKalipanathi76.733310.368295Parambikulam WLSKalipanathi76.733310.36829626Vazhachal DivisionKalipanathi76.733310.35329726Vazhachal DivisionChemmanampathy76.83667 <t< td=""><td>80</td><td>22</td><td>Vazhachal Division</td><td>Poringalkuthu dam</td><td>76.63881</td><td>10.32114</td></t<>	80	22	Vazhachal Division	Poringalkuthu dam	76.63881	10.32114
82 22 Vazhachal Division Furmapara 76.83393 10.45923 83 22 Vazhachal Division Thavalakuzhipara 76.69077 10.27635 84 23 Nenmara Division Chuliyar dam 76.7649 10.59766 85 23 Nenmara Division Muthalamada 76.7690 10.59766 86 24 Parambikulam WLS Anappadi 76.82922 10.45397 87 24 Parambikulam WLS Sunkam colony 76.5723 10.46667 88 24 Parambikulam WLS Sunkam colony 76.5731 10.35482 90 25 Parambikulam WLS Katri Adam 76.5731 10.36687 91 25 Parambikulam WLS Katri Adam 76.7533 10.36687 92 25 Parambikulam WLS Katri Mala 76.7539 10.36687 93 25 Parambikulam WLS Katri Mala 76.7539 10.36687 94 25 Parambikulam WLS Bamboos 76.75391	81	22	Parambikulam WLS	Kurankuzhipalam	76.65754	10.38551
83 22 Vazhachal Division Thavalakuzhipara 76.69077 10.27635 84 23 Nenmara Division Chuliyar dam 76.7649 10.59161 85 23 Nenmara Division Muthalamada 76.7690 10.59786 86 24 Parambikulam WLS Anappadi 76.82922 10.45397 87 24 Parambikulam WLS Sunkam colony 76.5723 10.46627 88 24 Parambikulam WLS Sunkam colony 76.5733 10.45627 89 25 Parambikulam WLS Sunkam colony 76.5733 10.44809 90 25 Parambikulam WLS Katir Adam 76.7539 10.36720 91 25 Parambikulam WLS Katir Adam 76.7433 10.36720 92 25 Parambikulam WLS Katir Adam 76.7433 10.36689 93 25 Parambikulam WLS Katir Adam 76.7433 10.36689 94 26 Vazhachal Division Meenchal 76.75171<	82	22	Vazhachal Division	Erumapara	76.83393	10.45923
8423Nenmara DivisionChuliyar dam76.7646910.591618523Nenmara DivisionMuthalamada76.769010.597868624Parambikulam WLSAnappadi76.8292210.453978724Parambikulam WLSKuthirakolpathy76.8073110.456278824Parambikulam WLSSunkan colony76.7573310.448098925Parambikulam WLSEarth dam76.7583710.368229125Parambikulam WLSKest para76.7583710.368229125Parambikulam WLSWater hole76.7536910.367149225Parambikulam WLSKarimala76.769310.366279325Parambikulam WLSKarimala76.7649310.366279425Parambikulam WLSKalyanathi76.7583910.3662995Parambikulam WLSBamboos76.7649310.366299626Vazhachal DivisionMeenchal76.7583310.323339726Vazhachal DivisionMeenchal76.7583310.323339827Nenmara DivisionChemmanapathy76.8366710.826449028Parambikulam WLSShekailmudi76.8418110.473279126Vazhachal DivisionKenchal76.7683310.323339228Parambikulam WLSShekailmudi76.8366710.826449330Vazhachal DivisionKenchal76.83671 <td>83</td> <td>22</td> <td>Vazhachal Division</td> <td>Thavalakuzhipara</td> <td>76.69077</td> <td>10.27635</td>	83	22	Vazhachal Division	Thavalakuzhipara	76.69077	10.27635
8523Nenmara DivisionMuthalamada76,7669010,597868624Parambikulam WLSAnapadi76,8292210,453978724Parambikulam WLSKuthirakolpathy76,8073110,460278824Parambikulam WLSSunkam colony76,7572310,448098925Parambikulam WLSEarth dam76,7573710,363229125Parambikulam WLSRest para76,7536910,361219225Parambikulam WLSWater hole76,7536910,362169225Parambikulam WLSKarimala76,7463310,366279325Parambikulam WLSKalyanathi76,7463310,366279425Parambikulam WLSKalyanathi76,7463310,366399525Parambikulam WLSBamboos76,7649910,366399626Vazhachal DivisionMeenchal76,7583310,323339726Vazhachal DivisionMeenchal76,7583310,323339827Nenmara DivisionChemmanampathy76,8367110,314049928Parambikulam WLSShekailmudi78,8567110,3140410130Vazhachal DivisionMalakkapara76,8514110,472710130Vazhachal DivisionMalakkapara76,8591110,2743210230Vazhachal DivisionMalakkapara76,8591110,2743210230Vazhachal DivisionMal	84	23	Nenmara Division	Chuliyar dam	76.76469	10.59161
8624Parambikulam WLSAnappadi76.8292210.453978724Parambikulam WLSKuthirakolpathy76.8073110.456278824Parambikulam WLSSunkam colony76.7572310.448098925Parambikulam WLSEarth dam76.7657010.377149025Parambikulam WLSRest para76.7583710.368279125Parambikulam WLSWater hole76.756910.367209225Parambikulam WLSKarimala76.7469310.366879325Parambikulam WLSKalyanathi76.735910.366879425Parambikulam WLSPupara76.7659310.366879525Parambikulam WLSBamboos76.7649910.366879626Vazhachal DivisionMeenchal76.7391710.311399726Vazhachal DivisionChermanampathy76.3667110.32339827Nenmara DivisionChermanampathy76.83667110.3144410028Parambikulam WLSTop slip76.418110.4732710130Vazhachal DivisionMalakkapara76.8554110.2781310230Vazhachal DivisionUpper Sholayar76.8970310.32432	85	23	Nenmara Division	Muthalamada	76.76690	10.59786
8724Parambikulam WLSKuthirakolpathy76.8073110.456278824Parambikulam WLSSunkam colony76.7572310.448098925Parambikulam WLSEarth dam76.7657010.377149025Parambikulam WLSRest para76.7583710.368229125Parambikulam WLSWater hole76.7469310.366879225Parambikulam WLSKarimala76.7469310.366879325Parambikulam WLSKalyanathi76.7433310.366879425Parambikulam WLSKalyanathi76.7589910.364019525Parambikulam WLSPupara76.7604910.366899626Vazhachal DivisionSholayar dam76.7583310.323339726Vazhachal DivisionMeenchal76.7583310.323339827Nenmara DivisionChermanampathy76.83667110.3149410028Parambikulam WLSShekailmudi78.8567110.3149410130Vazhachal DivisionMalakapara76.8554110.2781310230Vazhachal DivisionUpper Sholayar76.8970310.32432	86	24	Parambikulam WLS	Anappadi	76.82922	10.45397
88 24 Parambikulam WLS Sunkam colony 76.75723 10.44809 89 25 Parambikulam WLS Earth dam 76.75723 10.37714 90 25 Parambikulam WLS Rest para 76.75837 10.36322 91 25 Parambikulam WLS Water hole 76.75369 10.36216 92 25 Parambikulam WLS Karimala 76.74693 10.36627 93 25 Parambikulam WLS Karimala 76.74693 10.36627 94 25 Parambikulam WLS Kalyanathi 76.74333 10.36720 94 25 Parambikulam WLS Sunkam colony 76.75859 10.36647 95 25 Parambikulam WLS Bamboos 76.76493 10.36647 95 26 Vazhachal Division Meenchal 76.75833 10.32333 98 27 Nenmara Division Chemmanampathy 76.836671 10.31404 100 28 Parambikulam WLS Shekailmudi 76.85611	87	24	Parambikulam WLS	Kuthirakolpathy	76.80731	10.45627
89 25 Parambikulam WLS Earth dam 76,76570 10,3774 90 25 Parambikulam WLS Rest para 76,75837 10,3682 91 25 Parambikulam WLS Water hole 76,7539 10,3624 92 25 Parambikulam WLS Karimala 76,7693 10,3624 92 25 Parambikulam WLS Karimala 76,7493 10,36687 93 25 Parambikulam WLS Kalyanathi 76,7589 10,36720 94 25 Parambikulam WLS Kalyanathi 76,75859 10,36697 95 25 Parambikulam WLS Bamboos 76,76049 10,36697 96 26 Vazhachal Division Meenchal 76,75833 10,3233 97 26 Vazhachal Division Meenchal 76,75833 10,32333 98 27 Nenmara Division Chemmanampathy 76,83671 10,31494 100 28 Parambikulam WLS Shekailmudi 78,85671 10,3	88	24	Parambikulam WLS	Sunkam colony	76.75723	10.44809
9025Parambikulam WLSRest para76,7583710,363829125Parambikulam WLSWater hole76,7536910,36279225Parambikulam WLSKarimala76,7433310,367209325Parambikulam WLSKalyanathi76,7585910,364019425Parambikulam WLSPupara76,7604910,366879525Parambikulam WLSBamboos76,7604910,366879626Vazhachal DivisionSholayar dam76,7583310,323339726Vazhachal DivisionMeenchal76,7583310,323339827Nenmara DivisionChemmanampathy76,8366710,582849928Parambikulam WLSShekailmudi78,8567110,3149410028Parambikulam WLSShekailmudi76,8366710,3243210130Vazhachal DivisionTop slip76,851410,2783310230Vazhachal DivisionUpper Sholayar76,8970310,32432	89	25	Parambikulam WLS	Earth dam	76.76570	10.37714
9125Parambikulam WLSWater hole76.7536910.362169225Parambikulam WLSKarimala76.7469310.366779325Parambikulam WLSKalyanathi76.7433310.367079425Parambikulam WLSPupara76.7585910.366479525Parambikulam WLSBamboos76.7604910.366899626Vazhachal DivisionSholayar dam76.7583310.323339726Vazhachal DivisionMeenchal76.7583310.323339827Nenmara DivisionChemmanampathy76.8366710.3140410028Parambikulam WLSShekailmudi78.8567110.3140410130Vazhachal DivisionMalakkapara76.8554110.2781310230Vazhachal DivisionUpper Sholayar76.8970310.32432	90	25	Parambikulam WLS	Rest para	76.75837	10.36382
9225Parambikulam WLSKarimala76.7469310.366879325Parambikulam WLSKalyanathi76.7433310.367209425Parambikulam WLSPupara76.7585910.366099525Parambikulam WLSBamboos76.7604910.366899626Vazhachal DivisionSholayar dam76.7391710.311399726Vazhachal DivisionMeenchal76.7583310.323339827Nenmara DivisionChemmanampathy76.8366710.3140410028Parambikulam WLSShekailmudi78.8567110.3140410130Vazhachal DivisionTop slip76.8418110.4732710230Vazhachal DivisionUpper Sholayar76.8970310.32432	91	25	Parambikulam WLS	Water hole	76.75369	10.36216
9325Parambikulam WLSKalyanathi76.7433310.367209425Parambikulam WLSPupara76.7585910.366499525Parambikulam WLSBamboos76.7604910.366899626Vazhachal DivisionSholayar dam76.7391710.311399726Vazhachal DivisionMeenchal76.7583310.323339827Nenmara DivisionChemmanampathy76.8366710.582849928Parambikulam WLSShekailmudi78.8567110.3114910028Parambikulam WLSTop slip76.8418110.4732710130Vazhachal DivisionMalakapara76.8551110.2781310230Vazhachal DivisionUpper Sholayar76.8970310.32432	92	25	Parambikulam WLS	Karimala	76.74693	10.36687
94 25 Parambikulam WLS Pupara 76,75859 10,36401 95 25 Parambikulam WLS Bamboos 76,76049 10,36689 96 26 Vazhachal Division Sholayar dam 76,75833 10,31139 97 26 Vazhachal Division Meenchal 76,75833 10,32333 98 27 Nenmara Division Chemmanampathy 76,83667 10,58284 99 28 Parambikulam WLS Shekailmudi 78,85671 10,31149 100 28 Parambikulam WLS Top slip 76,84181 10,47327 101 30 Vazhachal Division Malakkapara 76,89703 10,32432 102 30 Vazhachal Division Upper Sholayar 76,89703 10,32432	93	25	Parambikulam WLS	Kalyanathi	76.74333	10.36720
9525Parambikulam WLSBamboos76,7604910,366899626Vazhachal DivisionSholayar dam76,7391710,311399726Vazhachal DivisionMeenchal76,7583310,323339827Nenmara DivisionChemmanampathy76,8366710,582849928Parambikulam WLSShekailmudi78,8567110,3140410028Parambikulam WLSTop slip76,8418110,4732710130Vazhachal DivisionMalakapara76,8551110,2781310230Vazhachal DivisionUpper Sholayar76,8970310,32432	94	25	Parambikulam WLS	Pupara	76.75859	10.36401
9626Vazhachal DivisionSholayar dam76.7391710.311399726Vazhachal DivisionMeenchal76.7583310.323339827Nenmara DivisionChemmanampathy76.8366710.582849928Parambikulam WLSShekailmudi78.8567110.31140410028Parambikulam WLSTop slip76.8418110.4732710130Vazhachal DivisionMalakkapara76.8554110.2781310230Vazhachal DivisionUpper Sholayar76.8970310.32432	95	25	Parambikulam WLS	Bamboos	76.76049	10.36689
97 26 Vazhachal Division Meenchal 76.75833 10.32333 98 27 Nenmara Division Chemmanampathy 76.83667 10.58284 99 28 Parambikulam WLS Shekailmudi 78.85671 10.31404 100 28 Parambikulam WLS Top slip 76.84181 10.47327 101 30 Vazhachal Division Malakkapara 76.85541 10.32432 102 30 Vazhachal Division Upper Sholayar 76.89703 10.32432	96	26	Vazhachal Division	Sholayar dam	76.73917	10.31139
98 27 Nenmara Division Chemmanampathy 76.83667 10.58284 99 28 Parambikulam WLS Shekailmudi 78.85671 10.31404 100 28 Parambikulam WLS Top slip 76.84181 10.47327 101 30 Vazhachal Division Malakkapara 76.85541 10.32432 102 30 Vazhachal Division Upper Sholayar 76.89703 10.32432	97	26	Vazhachal Division	Meenchal	76.75833	10.32333
99 28 Parambikulam WLS Shekailmudi 78.85671 10.31404 100 28 Parambikulam WLS Top slip 76.84181 10.47327 101 30 Vazhachal Division Malakkapara 76.85541 10.27813 102 30 Vazhachal Division Upper Sholayar 76.89703 10.32432	98	27	Nenmara Division	Chemmanampathy	76.83667	10.58284
100 28 Parambikulam WLS Top slip 76.84181 10.47327 101 30 Vazhachal Division Malakkapara 76.85541 10.27813 102 30 Vazhachal Division Upper Sholayar 76.89703 10.32432	99	28	Parambikulam WLS	Shekailmudi	78.85671	10.31404
101 30 Vazhachal Division Malakkapara 76.85541 10.27813 102 30 Vazhachal Division Upper Sholayar 76.89703 10.32432	100	28	Parambikulam WLS	Top slip	76.84181	10.47327
102 30 Vazhachal Division Upper Sholayar 76.89703 10.32432	101	30	Vazhachal Division	Malakkapara	76.85541	10.27813
	102	30	Vazhachal Division	Upper Sholayar	76.89703	10.32432

Table 1 Geographic coordinates of transects sampled in 30 grids of study area (Continued)

Table 2 Species recorded as endemic to the Western Ghats, Sri Lanka and peninsular India

Scientific name	Common name
Troides minos ^a	Southern birdwing
Pachliopta pandiyana ^a	Malabar rose
Pachliopta hector ^b	Crimson rose
Papilio liomedonª	Malabar banded swallowtail
Papilio dravidarumª	Malabar raven
Papilio polymnestor ^b	Blue Mormon
Papilio buddha ^a	Malabar banded peacock
Papilio crino ^b	Common banded peacock
Eurema nilgiriensis ^a	Nilgiri grass yellow
Colias nilagiriensis ^a	Nilgiri clouded yellow
Delias eucharis ^b	Common jezebel
Prioneris sita ^b	Painted sawtooth
Appias wardii ^a	Lesser albatross
Pareronia ceylanica ^b	Dark wanderer
Discophora lepida ^b	Southern duffer
Parantirrhoea marshalli ^a	Travancore eveningbrown
Lethe drypetis ^b	Tamil treebrown
Mycalesis subdita ^b	Tamil bushbrown
Mycalesis igilia ^a	Small long brand bushbrown
Mycalesis orcha ^a	Pale brand bushbrown
Mycalesis patnia ^b	Glad eye bushbrown
Mycalesis oculus ^a	Red disc bushbrown
Mycalesis adolphei ^a	Red eye busbrown
Mycalesis davisoniª	Palni bushbrown/Lepcha bushbrown
Zipoetis saitis ^a	Tamil cats'eye
Ypthima ceylonica ^b	White fourring
Ypthima chenui ^a	Nilgiri fourring
Ypthima ypthimoides ^a	Palni fourring
Cethosia nietneri ^b	Tamil lacewing
Cirrochroa thais ^b	Tamil yeoman
Euthalia nais ^c	Baronet
Kallima horsfieldi ^a	Blue oakleaf
Parantica nilgiriensis ^a	Nilgiri tiger
Idea malabaricaª	Malabar tree nymph
Tarucus indica ^a	Transparent pierrot
Udara akasa ^b	White hedgeblue
Udara singalensis ⁶	Singalese hedgeblue
Celatoxia albidiscaª	White disc hedgeblue
Arhopala aled ^a	Rosy oakblue/Kanara oakblue
Arhopala bazaloides ^b	Dusted oakblue
Spindasis schistacea ^b	Plumbeous silverline
Spindasis ictis ^b	Common shot silverline
Spindasis abnormis ^a	Abnormal silverline
Zesius chrysomallus ^b	Redspot

^aSpecies endemic to the Western Ghats

^bSpecies endemic to the Western Ghats and Sri Lanka

^cSpecies endemic to the Western Ghats and peninsular India

Butterflies in the study grids were sampled along the transects using the Pollard line transect method (Pollard & Yates, 1993) with slight modifications. Butterflies sighted within 5 m on either side and in front of the observer walking at a constant pace of 1 km/h were recorded. The individuals that could not be identified by sight were either caught with an insect net for close examination or photographed and released. The butterflies were identified using suitable keys (Evans, 1932; Kehimkar, 2008; Wynter-Blyth, 1957). The sanction obtained from the Kerala Forest and Wildlife Department (No. WL 10-36790/ 15) for sampling in protected areas in the Western Ghats prohibited collection of endemic species. Hence, identification of smaller species belonging to families Lycaenidae and Hesperidae by sight was difficult.

The sampling was done over a 4-year period from May 2015 to April 2019 and the transect data collected along 102 transects (Table 1) was used to map the distribution of endemic species/subspecies onto the grids of the study area. The species occurrence matrix was prepared by scoring the presence/absence (1/0) of endemic species within the sampling grids. The geographic coordinates of transects were marked using Global Positioning System (GPS; GPSMAP 76Cx) which has good receptivity in forest areas. The GPS readings are plotted over geo-referenced Survey of India (SOI) by using open source Geographic Information System (GIS) software. The base layers such as water bodies, forest and boundaries were digitised from SOI topo sheets and updating of layers from latest satellite imageries done using GIS and remote sensing software. The final distribution map of endemic species whereby each point represents the occurrence of a single individual within the study area was prepared using the GIS software (Environmental Systems Research Institute (ESRI), 2011).

Using the sampling data for 4 years, the relationship between the observed species occurrence in the surveyed sites and site groups was analysed and the indicator species determined (De Cáceres & Legendre, 2009; De Cáceres, Legendre, Wiser, & Brotons, 2012; Dufrene & Legendre, 1997). Analyses were implemented in RStudio ver. 3.6.2 (RStudio Team, 2015) and indicative species were identified using multipatt function in package indispecies ver.1.7.9. The total count of species within each grid cell was measured as the species richness. Weighted endemism (WE) is a function of species richness and range size rarity (Crisp et al., 2001; Kier & Barthlott, 2001):

WE= $\Sigma 1/C$

where C is the number of grids in which each species occurs.

The total WE index of each grid was obtained by summing the WE indices of all species recorded in that particular grid. Finally, the corrected weighted endemism index (CWEI) was calculated for each cell by dividing

Tadie z species recorded as endernic to the western Ghats, sh lanka and deninsular india (continu	able 2 Species recorded as	s endemic to the Western	Ghats, Sri Lanka and	peninsular India (Continue
---	----------------------------	--------------------------	----------------------	----------------------------

Scientific name	Common name
Tajuria jehana ^b	Plains blue royal
Hypolycaena nilgirica ^b	Nilgiri tit
Rapala lankana ^b	Malabar flash
Curetis thetis ^b	Indian sunbeam
Curetis siva ^a	Shiva sunbeam
Sarangesa purendraª	Spotted small flat
Aeromachus pygmaeus ^a	Pygmy scrub hopper
Sovia hyrtacus ^a	Bicolour ace/White branded ace
Thoressa honorei ^a	Madras ace/Sahyadri orange ace
Thoressa astigmata ^a	Unbranded ace/Southern spotted ace
Thoressa sitalaª	Tamil ace/Sitala ace/Nigiri plain ace
Thoressa evershedi ^a	Evershed's ace/Travancore tawny ace
Arnetta mercaraª	Coorg/Kodagu forest hopper
Arnetta vindhianaª	Vindhyan bob
Quedara basiflava ^a	Golden/Yellow-base tree flitter
Oriens concinnaª	Tamil/Sahyadri dartlet
Caltoris canaraica ^a	Kanara/Karwar swift

Page 9 of 19

Tab	le :	3 Su	bspecies	recorded	as e	endemic	to t	he ۱	Western	Ghats
-----	------	-------------	----------	----------	------	---------	------	------	---------	-------

Scientific name	Common name
Graphium antiphates naira	Sahyadri five bar swordtail
Graphium sarpedon teredon	Sahyadri narrow banded bluebottle
Papilio helenus daksha	Sahyadri red helen
Papilio paris tamilana	Sahyadri paris peacock
Eurema andersonii shimai	Sahyadri one spot grass yellow
Appias indra shiva	Sahyadri plain puffin
Appias lyncida latifasciata	Sahyadri chocolate albatross
Cepora nadina remba	Sahyadri lesser gull
Pieris canidia canis	Sahyadri cabbage white
Hebomoia glaucippe australis	Sahyadri great orange tip
Rohana parisatis atacinus	Sahyadri black prince
Charaxes schreiber wardii	Sahyadri blue nawab
Vindula erota saloma	Sahyadri cruiser
Dolpha evelina laudabilis	Sahyadri redspot duke
Athyma ranga karwara	Sahyadri blackvein sergeant
Athyma selenophora kanara	Sahyadri staff sergeant
Lassipe viraja kanara	Sahyadri yellow jacksailer
Neptis clinia kallaura	Sahyadri sullied sailer
Neptis nata hampsoni	Sahyadri clear sailer
Neptis soma palnica	Palni/Creamy sailer
Parthenos sylvia virens	Sahyadri clipper
Doleschallia bisaltide malabarica	Malabar autumn leaf
Vanessa indica pholoe	Sahyadri red admiral
Melanitis phedima varaha	Sahyadri dark eveningbrown
Melanitis zitenius gokala	Sahyadri great eveningbrown
Mycalesis anaxias anaxias	Sahyadri white bar bushbrown
Actolepis lilacea lilacea	Sahyadri lilac hedgeblue
Celastrina lavendularis lavenduris	Sri Lankan plain hedgeblue
Thaduka multicaudata kanara	Sahyadri many tailed oakblue
Catapaecilma major callone	Sahyadri common tinsel
Zinaspa todara todara	Sahyadri silver streaked acacia blue
Aeromachus dubius dubius	Sahyadri dingy scrub hopper
Pseudocoladenia dan dan	Sahyadri fulvous pied flat

the weighted endemism index by the total count of species in that particular cell (Linder, 2000). Since the proportion of endemics in a grid cell is measured, this index corrects the species richness effect.

CWEI=WE/K

where C is the number of grid cell in which each endemic species occurs, and K is the total number of species in a grid cell.

Results

The data set for sampling comprised of 94 endemic species (Tables 2 and 3) which include 60 species recorded as endemic to Western Ghats and Sri Lanka (Gaonkar, 1996), 1 species endemic to peninsular India and 33 subspecies reported as endemic to the area (Kunte, Nitin, & Basu, 2018).

The number of species occurrence varied from one to thirty-eight and consisted of only presence points. Overall, 393 sightings of endemic species and subspecies were recorded within the 30 grids over the 4 years. The distribution of 60 endemic species/subspecies recorded during the study was mapped onto grids of the study (Figs. 3, 4, 5, 6 and 7).

When considering the family-wise distribution of endemics recorded, Papilionidae had the highest number of sightings (194) followed by Nymphalidae (116), Pieridae (54), Hesperidae (17), and Lycenidae (12). Troides minos was the most sighted (38 sightings) and widespread species being recorded in 19 grids (63.3%). Species which were restricted to the montane and upper montane areas of the Karimala peak in Parambikulam WLS/TR and Nelliampathy in the Nenmara FD include Celatoxia albidisca, Udara akasa, U. singalensis, Curetis thetis, Eurema nilgiriensis, E. andersonii shimai, Colias nilagiriensis, Melanitis phedima varaha, Ypthima ceylonica, Y. chenui, Y. ypthimoides, Athyma selenophora kanara, Lassipe viraja kanara and Parantica nilgiriensis. Sovia hyrtacus was recorded only from the Vazhachal FD whilst Kallima horsfieldi was recorded from Vazhzachal FD and Peechi-Vazhani WLS. Widespread endemic species like Troides minos, Pachliopta hector and Delias eucharis were observed along transects which were located near settlements and roads. Rohana parisatis atacinus, Parthenos sylvia virens and Graphium sarpedon teredon were forest edge species whilst Cirrocroa thais and Papilio polymnestor were common at low elevations. Twenty-one out of the 37 Western Ghats endemics (56%); 18 out of the 24 Western Ghats, Sri Lanka and peninsular India endemics (75%) and 21 out of the 33 endemic subspecies (63%) were observed during the 4year period. Seven endemic species was recorded in family Nymphalidae followed by Papilionidae (5), Hesperidae (4), Lycaenidae (3), and Pieridae (2).

Indicator analysis identified seventeen indicator species of which five, namely *Cirrochroa thais*, *Papilio paris tamilana*, *Papilio helenus daksha*, *Parthenos sylvia virens* and *Mycalesis patnia* were significant at $p \le 0.001$ and the remaining twelve species were significant at $p \le 0.05$ (Table 4). In the former group, two were endemic to Western Ghats and Sri Lanka whilst three were endemic to the Western Ghats at subspecies level. An interesting and unexpected trend noticed is that out of the seventeen indicator species, five species were endemic to the Western Ghats, four were endemic to the the former graves and the f

Western Ghats and Sri Lanka region and eight species were endemic at the subspecies level. Does a greater number of subspecies level endemic indicators hint at subtle speciation events in progress? The five most significant species were indicative of habitats in Chinmony WLS, Peechi-Vazhani WLS, Parambikulam WLS/TR,

Fig. 4 a-i Distribution maps of endemic butterflies of family Pieridae within study area. a Eurema nilgiriensis. b Colias nilagiriensis. c Delias eucharis. d Pareronia ceylanica. e Eurema andersonii shimai. f Appias indra shiva. g Appias lyncida latifasciata. h Pieris canidia canis. i Hebomoia glaucippe australis

Fig. 5 a-z Distribution maps of endemic butterflies of family Nymphalidae within study area. a Discophora lepida. b Lethe drypetis. c Mycalesis subdita. d Mycalesis igilia. e Mycalesis patnia. f Zipoetis saitis. g Ypthima ceylonica. h Ypthima chenui. i Ypthima ypthimoides. j Cethosia nietneri. k Cirrochroa thais. l Euthalia nais. m Kallima horsfieldi. n Parantica nilgiriensis. o Idea malabarica. p Rohana parisatis atacinus. q Charaxes schreiber wardii. r Vindula erota saloma. s Dolpha evelina laudabalis. t Athyma selenophora kanara. u Lassipe viraja kanara. v Parthenos sylvia virens. w Vanessa indica pholoe. x Melanitis phedima varaha. y Melanitis zitenius gokala. z Mycalesis anaxias anaxias

Nenmara FD and Vazhachal FD. The number of transects in the above locations which had sightings of these species were as follows: *Cirrochroa thais* (15), *Papilio paris tamilana* (8), *Papilio helenus daksha* (19), *Parthenos sylvia virens* (17) and *Mycalesis patnia* (15). The endemic species indicative of Chalakudy FD and Thrissur FD were *Troides minos* and *Pachliopta hector* which were common and widespread species.

Calculating the endemism index of the species helped identify locations having higher conservation implications (Fig. 8). When examining the corrected endemism index (CWEI) values, the highest index was observed in grid 25 (CWEI—14.44) followed by grids 24 (CWEI—12.06) and 19 (CWEI—11.86). Sixteen grids (3, 4, 5, 8, 9, 11, 12, 15, 17, 18, 20, 21, 22, 23, 26, 28) have CWEI values ranging from 4.07 to 7.75 and seven grids (1, 2, 6, 7, 10, 27, 30) have CWEI values between 2.07 and 3.89. In four grids (13, 14, 16, 29), no endemic species were recorded. Grids with the lowest values were those located in areas within towns with high human activities.

Discussion

Out of the 94 endemic species and subspecies reported from the Western Ghats, 60 species were recorded and mapped in this study. The study area which covers 2.14% of the Western Ghats hotspot harbours almost 63.82% of the region's endemic butterfly species making this particular region as important and crucial for conservation and management. Assessment of selected sites with respect to butterflies indicate that locations like Vazhachal Reserve Forest, Nelliampathy Reserve Forest, Parambikulam Wildlife Sanctuary/Tiger Reserve, and Peechi-Vazhani Wildlife Sanctuary harbour endemic species and should be prioritised in biodiversity conservation plans. A simple monitoring protocol using endemic butterflies was developed and the GIS mapping provided information on the distribution of endemic species within the study area. These monitoring studies clearly emphasise the well documented fact that reliable field data along with robust analytic tools will help guide conservation of these fragile endemics in this biodiversity hotspot.

Kessler and Kluge (2008) postulated that distribution patterns of endemic species along tropical elevational

gradients usually reach a maximum richness between 500 and 2000 m. In this study, the grids with the highest peaks, Padagiri (1585 m; grid 19) and Karimala (1438 m; grid 25) also showed high endemism indices of 11.89 and 14.14 respectively. Mangattu Kumban (grid 9) at mid elevation of 635 m had an endemism index of 7.78 (Fig. 9). These findings thus support the elevational gradient-species richness relationship proposed above.

The main advantage of the CWEI is its noncorrelation to species richness and ability to distinguish range-restricted species at a very subtle level. We could identify unique pockets where such species occur within the study area: *Parambikulam WLS/TR*: Kuthirakolpathy, Pupara, Kalyanathi, Top slip and Muthalakuzhy; *Peechi-Vazhani WLS*: Ayyapankadu; *Thrissur FD*: Chakkapara and Vellakarithadam; *Nenmara FD*: Karikatty, Pothumala and Nelliampathy estate; *Vazhachal FD*: Poringalkuthu dam, Meenchal and Vazhachal (Fig. 10). The biotic and abiotic factors in these areas should be rigorously studied to determine if they are microrefugial habitats of these rare species.

It is a well-established fact that current spatial distribution and diversity patterns are a reflection of a long evolutionary and biogeographical history. In order to

elucidate these complex mechanisms we suggest further studies in this vulnerable hotspot by adopting the following three approaches: (1) studying the *phylogenetic endemism* (Rosauer, Laffan, Crisp, Donnellan, & Cook, 2009) would help uncover the events that have shaped the rich diversity of this region having Gondwanan, Sundaland and recent biogeographical elements with respect to butterflies. The butterfly fauna of this region with over 300 well documented species would an ideal template for such investigations (2) identification of *microrefugia* which Harrison and Noss (2017) caution will assume greater relevance against the backdrop of climate change would be another area for butterfly research in this hotspot and (3) finally, the Western Ghats with its steep gradients and undulating terrain would be the perfect arena to test the 'Mountain Geobiodiversity Hypothesis' (Mosbrugger, Favre, Muellner-Riehl, Päckert, & Mulch, 2018) with respect to butterflies.

Endemic species are useful indicators of habitat quality and can also act as umbrella species for conservation planning and management. Given the high diversity and endemism among the butterfly communities of the

Table 4 Indicator species analysis for all combinations of site categories

Site categories—Wildlife Sanctuaries/Forest Divisions (WLS/FD)	Species	IndVal.g	P value	Endemicity
Chinmony WLS	Cirrochroa thais	0.749	0.003**	WG and SL
	Papilio paris tamilana	0.660	0.009**	WG SS
	Mycalesis igilia	0.577	0.033*	WG
	Papilio buddha	0.563	0.030*	WG
	Mycalesis anaxias anaxias	0.537	0.032*	WG SS
	Appias indra shiva	0.527	0.024*	WG SS
	Rohana parisatis atacinus	0.502	0.035*	WG SS
	Pareronia ceylanica	0.468	0.049*	WG and SL
Chinmony WLS+Nenmara D	Hebomoia glaucippe australis	0.581	0.018*	WG SS
	Papilio liomedon	0.475	0.043*	WG
Chinmony WLS+Peechi Vazhani WLS	Papilio helenus daksha	0.601	0.008**	WG SS
	Parthenos sylvia virens	0.600	0.005**	WG SS
	Appias lyncida latifasciata	0.492	0.014*	WG SS
Chalakudy D+Chinmony WLS+Peechi Vazhani WLS	Troides minos	0.647	0.028*	WG
Chinmony WLS+Peechi Vazhani WLS+Vazhachal D	Papilio dravidarum	0.497	0.028*	WG
Nenmara D+Parambikulam WLS/TR+Vazhachal D	Mycalesis patnia	0.598	0.005**	WG and SL
Chalakudy D+Nenmara D+Peechi Vazhani WLS+Thrissur D	Pachliopta hector	0.590	0.025*	WG and SL

Endemicity: WG-endemic to Western Ghats; WG & SL-endemic to Western Ghats and Sri Lanka; WG SS-endemic to Western Ghats at sub species level Asterisks indicate p value: * $p \le 0.05$; ** $p \le 0.001$

Kerala part of the Western Ghats, implementation of effective conservation actions would require an integrated approach involving: (1) management of vulnerable and unique habitats at microscale level as landscape level management may sometimes fail to recognise truly 'hot' microhabitats (2) conservation-driven research with emphasis on phylogenetic endemism and microrefugia of species (3) continuous monitoring of habitat and populations based on community forest management through stakeholder participation (4) raising conservation awareness in local communities living in close proximity to and highly dependent on forest resources.

Conclusions

The distribution of 60 endemic species/subspecies was recorded and mapped within the 30 study grids over the 4-year study period. Overall, 393 sightings of endemic species and subspecies were recorded and the family Papilionidae had the highest number of sightings (194) followed by Nymphalidae (116), Pieridae (54), Hesperidae (17) and Lycenidae (12). Out of the total of 37 species endemic to the Western Ghats, 21 species (56%); 18 species of the total of 24 (75%) species endemic to Western Ghats, Sri Lanka and peninsular India and 21 species of a total of 33 (63%) endemic subspecies were recorded. The highest number of Western Ghats endemics was recorded in family Nymphalidae (7) followed by Papilionidae (5), Hesperidae (4), Lycaenidae (3) and Pieridae (2).

Indicator analysis identified seventeen indicator species of which five, namely *Cirrochroa thais, Papilio paris tamilana, Papilio helenus daksha, Parthenos sylvia virens*, and *Mycalesis patnia* were significant and were indicative of habitats in Chinmony WLS, Peechi Vazhani WLS, Parambikulam WLS/TR, Nenmara FD and Vazhachal FD. The endemic species indicative of Chalakudy FD and Thrissur FD were *Troides minos* and *Pachliopta hector*.

The highest corrected weighted endemism index was observed in grid 25 followed by grids 24 and 19. Sixteen grids showed values ranging from 4.07 to 7.75 and seven grids had values between 2.07 and 3.89. The grids with the highest peaks of the study area, Padagiri, Karimala and Mangattu Kumban also showed high endemism indices. Kuthirakolpathy, Pupara, Kalyanathi, Top slip, Muthalakuzhy, Ayyapankadu, Chakkapara Vellakarithadam, Karikatty, Pothumala, Nelliampathy estate, Poringalkuthu dam, Meenchal, and Vazhachal were areas harbouring unique and range restricted species.

This study has shown interesting geographic patterns of the spatial structure of endemism richness in a highly critical hotspot area. Conservation management in the Indian context is expected to benefit if biodiversity can be characterised to more local levels (Bossuyt et al., 2004). This study shows that even within hotspots, endemicity is not uniform and our efforts should be to focus on small areas that represent unique species associations. Even though the addition of more taxa will be useful for a more complete overview, we believe that these are primary areas in the central region of the Kerala part of the Western Ghats that harbour species of conservation value. Moreover, these are also species having a complex evolutionary history and should therefore be monitored and studied in further depth, especially when designing conservation strategies. Thus as we advance into a future wrought with climatic instabilities and increased human impacts, research should be finetuned and the delineation of phylogenetic endemism patterns and identification of microrefugia would definitely be a step forward in the right direction for butterfly conservation in this fragile hotspot.

Abbreviations

WLS: Wildlife sanctuary; WLS/TR: Wildlife sanctuary/tiger reserve; FD: Forest division; GPS: Global Positioning System; SOI: Survey of India; GIS: Geographic Information System; WE: Weighted endemism; CWEI: Corrected weighted endemism index

Acknowledgements

A.M. acknowledges the University Grants Commission, New Delhi, India, for providing the post-doctoral fellowship. The authors thank Suganthasakthivel R. and Roby T.J. for figures and maps; Sandex V. and Vinod M.B. for assistance rendered during field surveys and the staff of the Kerala Forest Department for logistic support. The authors are also grateful to the anonymous reviewers and editor for their valuable comments/suggestions which have helped us to improve an earlier version of the manuscript.

Authors' contributions

A.M. conceived and designed the study, conducted field surveys and data collection and drafted the manuscript. B.C.F. helped coordinate the study and review the manuscript. I.A. performed the data analysis in R. The authors read and approved the final manuscript.

Funding

This work was supported by a postdoctoral research grant (F.15-1/2012-13/ PDFWM-2012-13-GE-KER-21937 (SA-II) to the first author from the University Grants Commission, Government of India. The funding was for research purposes, mainly travel and contingency expenses associated with the project.

Availability of data and materials

All data generated or analysed during this study are included in this published article.

Declarations

Ethics approval and consent to participate

Sampling in protected areas was conducted under permit (No. WL 10-36790/ 15) from the Kerala Forest and Wildlife Department, India. No animals were harmed during field sampling. No endemic butterfly or plant species were collected from protected areas during the study.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

¹Research and Post Graduate Department of Zoology, St. Thomas College, Thrissur, Kerala 680001, India. ²Quantiphi Analytics, Trifecta Adatto, Whitefield, Bengaluru, Karnataka 560048, India.

Received: 13 July 2020 Accepted: 27 April 2021 Published online: 17 May 2021

References

- Bátori, Z., Vojtkó, A., Farkas, T., Szabó, A., Havadtői, K., Vojtkó, A. E., ... Keppel, G. (2017). Large and small-scale environmental factors drive distributions of cool-adapted plants in karstic microrefugia. *Annals of Botany*, 119(2), 301–309. https://doi.org/10.1093/aob/mcw233.
- Bharucha, E. (2006). Protected areas and Land-scape linkages: Case studies from the Maharastra scenario. *Journal of Bombay Natural History Society*, 103(2), 327.
- Bhaumik, V., & Kunte, K. (2018). Female butterflies modulate investment in reproduction and flight in response to monsoon -driven migrations. *Oikos*, 127(2), 285–296. https://doi.org/10.1111/oik.04593.
- Bossuyt, F., Meegaskumbura, M., Beenaerts, N., Gower, D., Pethiyagoda, R., Roelants, K., ... Milinkovitch, M. (2004). Local endemism within the Western Ghats-Sri Lanka biodiversity hotspot. *Science (New York, N.Y.)*, 306(5695), 479– 481. https://doi.org/10.1126/science.1100167.
- Brooks, T. M., Mittermeier, R. A., Mittermeier, C. G., Fonseca, C., Rylands, G., Konstant, A., ... Craig (2002). Habitat loss and extinction in the hotspots of biodiversity. *Conservation Biology*, *16*(4), 909–923. https://doi.org/10.1046/j.1 523-1739.2002.00530.x.
- Camacho-Sanchez, M., Quintanilla, I., Hawkins, M. T. R., Tuh, F. Y. Y., Wells, K., Maldonado, J. E., & Leonard, J. A. (2018). Interglacial refugia on tropical mountains: Novel insights from the summit rat (*Rattus baluensis*), a Borneo mountain endemic. *Diversity and Distributions*, 24(9), 1252–1266. https://doi. org/10.1111/ddi.12761.
- Champion, H. G., & Seth, S. K. (1968). A revised survey of the forest types of India. Govt. of India Press.
- Crisp, M. D., Laffan, S., Linder, H. P., & Monro, A. (2001). Endemism in the Australian flora. *Journal of Biogeography*, 28(2), 183–198. https://doi.org/10.1 046/j.1365-2699.2001.00524.x.
- Dash, S., Nair, A. A., Kulkarni, M. A., & Mohanty, U. (2011). Characteristic changes in the long and short spells of different rain intensities in India. *Theoretical Applied Climatology*, 105. https://doi.org/10.1007/s00704-011-0416-x.
- De Cáceres, M., & Legendre, P. (2009). Associations between species and groups of sites: Indices and statistical inference. *Ecology*, 90(12), 3566–3574. https:// doi.org/10.1890/08-1823.1.
- De Cáceres, M., Legendre, P., Wiser, S. K., & Brotons, L. (2012). Using species combinations in indicator value analyses. *Methods in Ecology and Evolution*, 3(6), 973–982. https://doi.org/10.1111/j.2041-210X.2012.00246.x.
- De Frenne, P., Rodríguez-Sánchez, F., Coomes, D. A., et al. (2013). Microclimate moderates plant responses to macroclimate warming. *Proceedings of the National Academy of Sciences of the United States of America.*, 110(46), 18561– 18565. https://doi.org/10.1073/pnas.1311190110.
- Dobrowski, S. Z. (2011). A climatic basis for microrefugia: The influence of terrain on climate. *Global Change Biology*, 17(2), 1022–1035. https://doi.org/10.1111/ j.1365-2486.2010.02263.x.
- Dufrene, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. *Ecological Monographs*, 67, 345–366.
- Environmental Systems Research Institute (ESRI). (2011) Arc GIS Desktop: Release 10. Evans, W. H. (1932). *Identification of Indian butterflies*. Bombay Natural History Society.
- Gaonkar, H. (1996). Butterflies of the Western Ghats, India, including Sri Lanka: A biodiversity assessment of a threatened mountain system. Centre for Ecological Sciences, Indian Institute of Science & London: Natural History Museum.
- Harrison, S., & Noss, R. (2017). Endemism hotspots are linked to stable climatic refugia. Annals of Botany, 119(2), 207–214. https://doi.org/10.1093/aob/ mcw248.
- Jha, C., Dutt, C., & Bawa, K. (2000). Deforestation and land use changes in Western Ghats, India. *Current Science*, *79*, 231–238.
- Kehimkar, I. (2008). The book of Indian butterflies. Bombay Natural History Society. Keppel, G., Robinson, T. P., Wardell-Johnson, G. W., Yates, C. J., van Niel, K. P.,
- Byrne, M., & Schut, A. G. T. (2017). Low-altitude mountains as refugium for two narrow endemics in the Southwest Australian Floristic Region biodiversity hotspot. *Annals of Botany*, *119*(2), 289–300. https://doi.org/10.1 093/aob/mcw182.
- Kessler, M., & Kluge, J. (2008). Diversity and endemism in tropical montane forests-from patterns to processes. *Biodiversity and Ecology Series*, 2, 35–50.

- Kier, G., & Barthlott, W. (2001). Measuring and mapping endemism and species richness: A new methodological approach and its application on the flora of Africa. *Biodiversity Conservation*, *10*(9), 1513–1529. https://doi.org/10.1023/A:1 011812528849.
- Kier, G., Kreft, H., Lee, T. M., Jetz, W., Ibisch, P. L., Nowicki, C., ... Barthlott, W. (2009). A global assessment of endemism and species richness across island and mainland regions. *PNAS*, 106(23), 9322–9327. https://doi.org/10.1073/pna s.0810306106.
- Klein, C., Wilson, K., Watts, M., Stein, J., Berry, S., Carwardine, J., ... Possingham, H. (2009). Incorporating ecological and evolutionary processes into continentalscale conservation planning. *Ecological Applications*, 19(1), 206–217. https:// doi.org/10.1890/07-1684.1.
- Kunte, K. (2005). Species composition, sex-ratio and movement patterns in danaine butterfly migrations in southern India. *Journal of the Bombay Natural History Society*, 102, 280–286.
- Kunte, K. (2008). The Wildlife (Protection) Act and conservation prioritization of butterflies of the Western Ghats, southwestern India. *Current Science*, 94, 729– 735.
- Kunte, K., Nitin, R., & Basu, D. N. (2018). A systematic, annotated checklist of the of the butterflies of the Western Ghats. In K. Kunte, S. Sondhi, & P. Roy (Eds.), *Butterflies of India*, v.2.53. Indian Foundation for Butterflies.
- Linder, H. P. (2000). Plant diversity and endemism in sub-Saharan tropical Africa. *Journal of Biogeography, 28,* 169–182.
- Margules, C. R., & Pressey, R. L. (2000). Systematic conservation planning. *Nature*, 405(6783), 243–253. https://doi.org/10.1038/35012251.
- Menon, S., & Bawa, K. S. (1998). Deforestation in the tropics: Reconciling disparities in estimates for India. Ambio, 27, 567–577.
- Mishra, V., Aaadhar, S., Shah, H., Kumar, R., Pattanaik, D. R., & Tiwari, A. D. (2018). The Kerala flood of 2018: Combined impact of extreme rainfall and reservoir storage. *Hydrology and Earth System Sciences Discussions*. https://doi.org/10.51 94/hess-2018-480.
- Mittermeier, R. A., Myers, N., Robles-Gil, P., & Mittermeier, C. G. (1999). Hotspots: Earth's biologically richest and most endangered terrestrial ecoregions. CEMEX.
- Mittermeier, R. A., Robles-Gil, P., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C. G., ... da Fonseca, G. A. B. (2004). Hotspots revisited: Earth's biologically richest and most endangered terrestrial ecoregions. CEMEX.
- Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M., & Gascon, C. (2011). Global biodiversity conservation: The critical role of hot spots. In F. E. Zachos, & J. C. Habel (Eds.), *Biodiversity hotspots: distribution and protection of conservation priority areas*, (pp. 3–22). Springer-Verlag. https://doi.org/10.1007/ 978-3-642-20992-5 1.
- Mondal, A., Khare, D., & Kundu, S. (2015). Spatial and temporal analysis of rainfall and temperature trend of India. *Theoretical and Applied Climatology*, 122(1-2), 143–158. https://doi.org/10.1007/s00704-014-1283-z.
- Mosblech, N. A. S., Bush, M. B., & van Woesik, R. (2011). On metapopulations and microrefugia: Palaeoecological insights. *Journal of Biogeography*, 38(3), 419– 429. https://doi.org/10.1111/j.1365-2699.2010.02436.x.
- Mosbrugger, V., Favre, A., Muellner-Riehl, A. N., Päckert, M., & Mulch, A. (2018). Cenozoic evolution of geo-biodiversity in the Tibeto-Himalayan region. In C. Hoorne, A. Perrigio, & A. Atonelli (Eds.), *Mountains, climate and biodiversity*, (pp. 429–448). Wiley-Blackwell.
- Myers, N. (1988). Threatened biotas: "hotspots" in tropical forests. *Environmentalist*, *1988*, 187–208.
- Myers, N. (1990). The biodiversity challenge: Expanded hot-spots analysis. Environmentalist, 10(4), 243–256. https://doi.org/10.1007/BF02239720.
- Myers, N. (2003). Biodiversity hotspots revisited. *Bioscience*, 53, 916–917.
- Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. *Nature*, 403(6772), 853–858. https://doi.org/10.1038/35002501.
- Nair, S. C. (1991). The southern western Ghats: A biodiversity conservation plan. Indian National Trust for Art and Cultural Heritage.
- Noss, R. F. (2013). Forgotten grasslands of the South: Natural history and conservation. Island Press. https://doi.org/10.5822/978-1-61091-225-9.
- Noss, R. F., Platt, W. J., Sorrie, B. A., Weakley, A. S., Means, D. B., Costanza, J., & Peet, R. K. (2015). How global biodiversity hotspots may go unrecognized: Lessons from the North American Coastal Plain. *Diversity and Distributions*, 21(2), 236– 244. https://doi.org/10.1111/ddi.12278.
- Pollard, E., & Yates, T. J. (1993). *Monitoring butterflies for ecology and conservation*. Chapman and Hall.
- Reddy, C. S., Jha, C. S., & Dadhwal, V. K. (2016). Assessment and monitoring of long-term forest cover changes (1920–2013) in Western Ghats biodiversity

hotspot. Journal of Earth System Science, 125(1), 103–114. https://doi.org/10.1 007/s12040-015-0645-y.

- Rosauer, D., Laffan, S. W., Crisp, M. D., Donnellan, S. C., & Cook, L. G. (2009). Phylogenetic endemism: A new approach for identifying geographical concentrations of evolutionary history. *Molecular Ecology*, *18*(19), 4061–4072. https://doi.org/10.1111/j.1365-294X.2009.04311.x.
- Roxy, M. K., Ghosh, S., Pathak, A., Athulya, R., Mujumdar, M., Murtugudde, R., ... Rajeevan, M. (2017). A threefold rise in widespread extreme rain events over central India. *Nature Communications*, 8(1), 1–11.
- RStudio Team (2015). RStudio: Integrated development for R. RStudio Inc.
- Stewart, J. R., Lister, A. M., Barnes, D., & Dalén, L. (2010). Refugia revisited: individualistic responses of species in time and space. *Proceedings of the Royal Society B: Biological Sciences*, 277(1682), 661–671. https://doi.org/10.1 098/rspb.2009.1272.
- Venevsky, S., & Venevskaia, I. (2005). Hierarchical systematic conservation planning at the national level: Identifying national biodiversity hotspots using abiotic factors in Russia. *Biological Conservation*, 124(2), 235–251. https://doi.org/10.1 016/j.biocon.2005.01.036.
- Vijayakumar, S. P., Menezes, R. C., Jayarajan, A., & Shanker, K. (2016). Glaciations, gradients and geography: Multiple drivers of diversification of bush frogs in the Western Ghats Escarpment. *Proceedings of the Royal Society B: Biological Sciences*, 283(1836), 20161011. https://doi.org/10.1098/rspb.2016.1011.
- Wynter-Blyth, M. A. (1957). Butterflies of the Indian region. Bombay Natural History Society.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- Convenient online submission
- ► Rigorous peer review
- Open access: articles freely available online
- ► High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com