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Abstract 

Background:  Tomato, Solanum lycopersicum L. (Solanales: Solanaceae) is the second most important vegetable crop 
in Egypt and is infested with many insect pests. The cotton leafworm, Spodoptera littoralis (Boisd.) causes severe eco‑
nomic losses in tomatoes and many other crops. Many management strategies were developed in order to manage 
the economic losses obtained. In this context, the present study was conducted to evaluate the effectiveness using a 
mixture of Emamectin benzoate and lufenuron or using them solely against the 2nd and 4th instar larvae of S. littoralis 
under semi-field conditions.

Results:  The obtained results showed that the mixture compound show high initial killing effect against 2nd and 
4th instar larvae in both growing seasons. Furthermore, the residual effect of the tested compounds also showed the 
efficiency of the mixture over the solitary active ingredients. In addition, the treatment of the 4th instar larvae with the 
LC50 of the tested compounds showed significant impacts against the soluble protein, carbohydrate, lipid contents, 
and the detoxification enzymes.

Conclusion:  In conclusion, the results showed that the emamectin benzoate and lufenuron could be safe and effec‑
tive substitute for conventional insecticides either applied solely or in combination.
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Background
Egyptian fields are enriched with numerous exported 
vegetables such as tomato. Tomato, Solanum lycoper-
sicum L. (Solanales: Solanaceae) is the second most 
important vegetable crops around the world and Egypt is 
considered the fifth largest producer in the world (Mash-
toly & Helal, 2016; Moussa et  al., 2013; Salama et  al., 

2019). Tomato represents the main host plant for many 
insect pests during the year, such as the Egyptian cotton 
leafworm. The Egyptian cotton leafworm, Spodoptera lit-
toralis (Boisduval) (Lepidoptera: Noctuidae) is consid-
ered one of the most severe and destructive insect pests 
on many field crops throughout the year in Africa, Asia, 
and Europe (Barrania, 2019; Carter & Spencer, 1986; 
El-Sheikh, 2015; Pineda et  al., 2007). In respect to the 
economic importance of this pest, many management 
strategies; such as biopesticides (Barrania & Selim, 2020), 
nano-based pesticides (Debnath et al., 2012; Thabet et al., 
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2021) and genetically modified crops (Salman et al., 2021) 
were developed in order to lessen the economic losses 
obtained. The management strategy of cotton leafworm 
in Egypt has depended on preserving and extending the 
insecticidal efficacy based on rotating various insecti-
cides including organophosphates, carbamates, insect 
growth regulators, and pyrethroids every year. The exten-
sive use of conventional insecticidal compounds caused 
many serious problems such as high resistance to many 
chemical pesticides, resurgence, and residues of chemi-
cal pesticides in the environment (Forgash, 1984; Hawk-
ins et al., 2019). Consequently, considerable effort should 
be performed to develop alternative or additional tech-
niques, which would allow a rational use of pesticides 
and provides adequate crop protection for sustainable 
food, feed, and fiber production. Among the most prom-
ising and excellent alternatives are avermectin insecticide 
group and insect growth regulators (IGRs) (Abdel-Baky 
et  al., 2019; Barrania & Selim, 2020; El-Sheikh, 2015; 
Metayi et al., 2015). The major advantage of using IGRs 
is that they have impacts on insect growth regulator 
hormones that are specific for insects and not for ani-
mals or humans. In addition, IGRs have great selectivity 
to the target insect species, so they are likely less harm-
ful to natural enemies when compared with the broader 
spectrum insecticides (El-Sheikh, 2015; Grafton-Card-
well et al., 2005). Lufenuron, a chitin synthesis inhibitor, 
influences the development of lepidopteran larvae and 
causes the production of infertile eggs. Treated insects 
develop normally until molting then fail to complete the 
molt due to the inhibition of the synthesis of new cuti-
cle (Tunaz & Uygun, 2004). Emamectin benzoate is a 
second-generation avermectin analog with exceptional 
activity against lepidopterans (Terán-Vargas et al., 1997). 
Emamectin benzoate acts as a chloride channel activa-
tor, which decreases the excitability of neurons. Shortly 
after exposure, the insect larvae stop feeding, become 
irreversibly paralyzed, and die in 3–4  days (Grafton-
Cardwell et  al., 2005). Recently, many agricultural ser-
vices companies offer commercial mixture compounds. 
Using such compounds can grant a noteworthy progress 
for Insect Pest Management programs (IPMs), including 
the potential impact for lowering the quantities of each 
agent used. Such reduction would mean supposedly low-
ering costs, lowering environmental pollution, lessening 
damage to beneficial organisms and reducing selection 
pressure leading to the development of resistance to 
each agent (El-Sheikh, 2015; Kandil et  al., 2020; Khatun 
et al., 2015; Korrat et al., 2012). Accordingly, the current 
study was conducted to detect the efficiency of Lufenu-
ron and Emamectin benzoate either alone or in combina-
tion against the 2nd and 4th instar larvae of S. littoralis 
under semi-field conditions. In addition, the biochemical 

effect of the tested compounds alone and in combination 
on the soluble vital contents like proteins, carbohydrates 
and lipids was investigated. Furthermore, the effect of 
the tested compounds on some enzyme activity was also 
determined.

Methods
Tested insects
A laboratory strain of S. littoralis was obtained as egg 
masses from the Research Division of the cotton leaf 
worm, Plant Protection Research Institute, Agricul-
tural Research Center, Dokki, Giza, Egypt. These eggs 
were kept in plastic cups covered with gauze under lab-
oratory condition of 27 ± 2  °C and 65 ± 5% R.H. until 
hatching. The newly hatched larvae were offered fresh 
and clean castor bean leaves, Ricinus communis L., and 
were checked on daily basis for adding more leaves if 
needed (Eldefrawi et  al., 1964; El-Guindy et  al., 1979). 
The 2nd and 4th instar larvae were employed for further 
investigations.

Tested compounds
Three commercial insecticidal compounds were tested 
against the 2nd and 4th instar larvae of S. littoralis. An 
emamectin benzoate compound under the trade name 
Pasha® (EC 1.9%) with a recommended application rate 
is 250  ml/feddan. It was obtained from ElHelb Pesti-
cides and Chemicals- Egypt. A chitin synthesis inhibitor 
compound (Lufenuron) under the trade name Cymex® 
(EC 5%) was obtained from Shoura Chemicals-Egypt 
and has a recommended application rate of 160 ml/fed-
dan. The third compound was a commercial mixture of 
both Lufenuron and emamectin benzoate with the trade 
name Heater® (Lufenuron 2% + Emamectin benzoate 
1%) (SC 3%). It was supplied from Starchem Industrial 
Chemicals-Egypt at the application rate of 100  ml/100L 
(Table 1).

Semi‑field application
In order to evaluate the efficacy of the tested com-
pounds against S. littoralis larvae, a semi-field experi-
ment was executed. The study was carried out 
throughout 2019 and 2020 late winter season at El-
Dakhaly village (30°42′38.3"N 30°45′52.9"E), the west-
ern side of Rashid branch, Kom Hamada Center, 
Beheira Governorate, Egypt. The field area was cul-
tivated with Alisa tomato variety on February the 
9th, 2019 and February the 8th, 2020, respectively. 
The standard agricultural practices were applied. The 
experimental area was divided into plates of 1/16 fed-
dan (Feddan = 4168.27m2; 1/16 feddan = 262.5 m2). 
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The treatment was arranged in randomized complete 
blocks design (RCBD) with four replicates each. Appli-
cation of the tested compounds was on March 11 in 
both growing seasons. Temperature in the experiment 
area were 23–27 ± 2  °C and the relative humidity was 
65–75 ± 10%. The tomato leaves were sprayed using a 
backpack sprayer. To determine the initial (24  h. post 
spraying) and residual (7- and 10-days post spray-
ing) effects of the tested compounds, treated tomato 
leaves were collected after 24  h, 7-days, and 10-days 
post spraying. Collected leaves were then transferred 
directly to the laboratory and offered to separate sets of 
the 2nd and 4th instar larvae of the cotton leaf worm. 
For the control group, 2nd and 4th instar larvae were 
offered untreated tomato leaves. Larvae were left to 
feed on treated leaves for 48  h and larval mortalities 
were recorded. Mortality percentage was corrected 
according to Abbott’s formula (Abbott, 1925).

Determination of LC values of the tested compounds
In order to determine the LC50 and LC90 values of the 
tested compounds for the 2nd and 4th instar larvae, a 
toxicity test was carried out using leaf-dipping tech-
nique (Abo El-Ghar et al., 1994). Dry and clean castor 
bean leaves were dipped for 10 s in six different concen-
trations of the tested compounds, then left to air dry 
at room temperature and then offered to 2nd and 4th 
instar larvae in clean jars, each jar containing 20 lar-
vae. Four replicates were used for each concentration 

of each treatment. Leaves dipped in water served as 
untreated group.

Biochemical assay
Preparation of insect samples
The insects were prepared as previously described by 
(Amin, 1998). The 4th instar larvae were treated with 
the LC50 of tested compounds for 24 h. One gram of the 
larvae that survived treatment was weighed and were 
homogenized in distilled water (50 mg/1 ml). Homogen-
ates were centrifuged at 8000 rpm for 15 min. at 4 °C in 
a cooling-centrifuge. The deposits were discarded and 
the supernatant, which is referred as enzyme extract, can 
be stored for at least one week without significant loss of 
activity when stored at 50 °C.

Determination of total proteins, total carbohydrates, 
and total lipids
The impact of the LC50 of tested compounds on the 
total proteins, total carbohydrate, and total lipids of the 
4th instar larvae was assayed according to (Bradford, 
1976), (DuBois et  al., 1956), and (Knight et  al., 1972), 
respectively.

Determination of enzyme activities
The activity of α- and β-esterases were determined 
according to (van Asperen, 1962). The activity of chi-
tinase was assayed according to (Bade & Stinson, 1981). 
The Glutathione S-transferase (GST) activity was deter-
mined according to (Habig et al., 1974).

Table 1  Molecular structure of Lufenuron and Emamectin benzoate

Molecular structure of Lufenuron (Pubcehm website) (National Center for 
Biotechnology Information, 2022b)

Molecular structure of Emamectin benzoate (Pubcehm website) (National 
Center for Biotechnology Information, 2022a)
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Statistical data analysis
All evaluated toxicity and physiological parameters 
were analyzed based on three replicates and the values 
are expressed as mean ± standard error. The data were 
statistically analyzed separately for each experiment 
and were subjected to analysis of variance (ANOVA) 
using SPSS 17.0 release 17.0.0 software (Statistical 
Package for Social Sciences, USA). Means were com-
pared according to (Snedecor & Cochran, 1980) and 
they were considered significant at P ≤ 0.05. Differences 
between the treatments were determined by Tukey’s 
multiple range test (P ≤ 0.05) (Snedecor and Cochran, 
1989). The LC50 values that obtained by regression lines 
according to (Finney, 1971) using "LdPLine®" software. 
The reduction percentage for each treatment was calcu-
lated by Henderson and Tilton’s formula (Henderson & 
Tilton, 1955).

Results
Semi‑field application
The initial (24  h. post spraying) and residual (7- and 
10-days post spraying) effects of Heater®, Pasha®, and 
Cymex® against the 2nd and 4th instar larvae were evalu-
ated during 2019 and 2020 growing seasons under semi-
field conditions. With regards to the initial effect of the 
tested compounds after one-day post treatment, the 
Pasha® and Cymex® exhibited more toxic effect than 
heater® against both the 2nd and 4th instar larvae dur-
ing both growing seasons. Moreover, the residual effect 
of the tested compounds against the 2nd and 4th instar 
larvae showed that Heater had the highest residual effect 
through both growing seasons (Tables 2 and 3). On the 
other hand, it was noted that the larval mortality caused 
by tested compounds was decreased in the 2nd growing 
season compared to the 1st one.

Table 2  The corrected larval mortality percentage of the 2nd and 4th instar larvae of the cotton leafworm S. littoralis after treatment 
with the tested compounds during 2019 growing season in Beheira governorate

Tested compounds Instar larvae Corrected mortality %

Initial kill Residual effect Mean

1 day 7-days 10-days

Heater® (Lufenuron + Emamectin benzo‑
ate)

2nd 79.7 97.4 100.0 92.3

4th 67.3 95.7 98.8 87.2

Pasha® (Emamectin benzoate) 2nd 85.6 90.0 93.3 89.6

4th 83.4 86.5 90.7 86.8

Cymax® (Lufenuron) 2nd 81.4 85.8 92.3 86.5

4th 77.3 82.7 90.0 83.3

Control 2nd 0 0 0 0

4th 0 0 0 0

Table 3  The corrected larval mortality percentage of the 2nd and 4th instar larvae of the cotton leafworm S. littoralis after treatment 
with the tested compounds during 2020 growing season in Beheira governorate

Tested compounds Instar larvae Corrected mortality %

Initial kill Residual effect Mean

1 day 7-days 10-days

Heater® (Lufenuron + Emamectin benzo‑
ate)

2nd 77.2 96.0 100.0 91.07

4th 65.8 94.3 98.0 86.3

Pasha® (Emamectin benzoate) 2nd 83.5 89.4 93.8 89.9

4th 83.9 86.7 91.0 87.5

Cymax® (Lufenuron) 2nd 82.7 85.5 93.3 87.2

4th 80.3 84.6 89.7 84.9

Control 2nd 0 0 0 0

4th 0 0 0 0
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Toxicity of the tested compounds
Results in Table 4 shows the LC50 and LC90 values of the 
tested compounds against the 2nd and 4th instar larvae 
of S. littoralis. Results showed that heater® exhibited the 
highest toxic effect according to the obtained LC50 values. 
In addition, the 2nd instar larvae were more susceptible 
than the 4th instar larvae. This was observed through 
the low LC50 values. Moreover, Cymax® was toxic than 
Pasha®. Furthermore, results showed that the 2nd instar 
larvae were more susceptible than the 4th instar lar-
vae. This was also observed through the low LC50 values 
determined for 2nd instar larvae compared to the 4th 
instar.

Biochemical effect of the tested compounds:
Effect of the tested compounds on total protein, total 
carbohydrates, and total lipids
The latent effect of treatment of the 4th instar larvae 
with the LC50 of the tested compounds on total pro-
teins, total carbohydrates, and total lipids is presented 
in Table  5. Treatment with the tested compounds 
decreased the total proteins, total carbohydrates, 
and total lipids compared to the control. In addition, 
Heater® was the most efficacious among the tested 
compounds as the reduction in the total proteins, total 
carbohydrates, and total lipids was more obvious.

Table 4  Susceptibility of S. littoralis to the tested compounds

Tested compounds Larval instar Lethal concentrations
(ppm/ml)

C. I. 95% Slope

Lower Upper

Heater
(Lufenuron + Emamectin benzoate)

2nd instar LC50 0.005 0.0007 0.015 0.63 ± 0.13

LC90 0.58 0.23 3.18

4th instar LC50 0.013 0.003 0.031 0.66 ± 0.13

LC90 1.19 0.46 7.31

Pasha
(Emamectin benzoate)

2nd instar LC50 0.007 0.001 0.018 0.63 ± 0.13

LC90 0.71 0.28 4.08

4th instar LC50 0.051 0.003 0.035 0.63 ± 0.13

LC90 1.68 0.61 13.77

Cymax
(Lufenuron)

2nd instar LC50 0.004 0.001 0.006 1.044 ± 0.23

LC90 0.061 0.033 0.24

4th instar LC50 0.005 0.002 0.008 1.16 ± 0.23

LC90 0.068 0.039 0.202

Table 5  Effect of the tested compounds on total proteins, total carbohydrates, and total lipids activity in 4th instar larvae of S. littoralis 
after treatment with LC50

Means in the same column with the same letter(s) are not significantly different. (P < 0.05) (Tukey’s Multiple Range Test)

b.w., body weight

***Highly significant effect

Tested compounds Total proteins 
(μg/g b.w.)
(Mean ± S.E.)

Total carbohydrates 
(μg/g b.w.)
(Mean ± S.E.)

Total lipids 
(μg/g b.w.)
(Mean ± S.E.)

Heater
(Lufenuron + Emamectin benzoate)

35.6 ± 0.33c 47.3 ± 0.9c 37 ± 0.6c

Pasha
(Emamectin benzoate)

41.6 ± 0.7b 53 ± 1.5b 40.33 ± 0.9b

Cymax
(Lufenuron)

42.3 ± 0.8b 50.3 ± 0.3b 39.3 ± 0.33b

Control 45 ± 0.6a 71 ± 0.6a 48. 6 ± 0.33a

Df 3 3 3

F value 46.555556 127.44792 77.555556

P 0.0000*** 0.0000*** 0.0000***
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Effect of the tested compounds on the detoxifying enzyme 
activities:
Results presented in Tables  6 and 7 show the effect of 
treatment of the 4th instar larvae with the LC50 of the 
tested compounds on some detoxifying enzymes; non-
specific esterases (α- and β- esterase), chitinase, and 
glutathione s-transferase (GST) activity. Results showed 
increased α-esterase activity which was significant in 
case of Heater® and cymax® but not significant in Pasha® 
treatment compared to control. Furthermore, results also 
revealed increased β-esterase activity which was insig-
nificant compared to control. Results also manifested 

that nevertheless the tested compound α-esterase activ-
ity exhibited higher activity for detoxification than 
β-esterase. Moreover, the activity of both chitinase and 
GST increased due to treatment with the tested com-
pounds. However, a significant increase in chitinase 
activity was detected in both Heater® and Cymax® but 
insignificant increase was observed in Pasha® treatment. 
In addition, a significant increase was observed in GST 
activity in both Heater® and Pasha® treatment and no 
significant difference was detected in case of Cymax® 
treatment.

Discussion
The present study was conducted in order to evaluate the 
efficacy of lufenuron and emamectin benzoate applied 
alone and as a mixture. Three commercial compounds 
were selected; Heater®, Pasha®, and Cymax®, which 
were a commercial mixture of emamectin benzoate and 
lufenuron, emamectin benzoate, and lufenuron, respec-
tively. The selected compounds were tested against the 
2nd and 4th instar larvae under semi-field conditions 
and in vitro. The results obtained showed that the tested 
compounds displayed high initial kill against both 2nd 
and 4th instar larvae. Further, the mixture compound 
(Heater®) showed higher toxicity against both instar lar-
vae more than the sole compounds. These results were in 
the same trend (Abdu-Allah, 2011; El-Sheikh, 2015) when 
treating S. littoralis larvae with emamectin benzoate and 
IGR compounds under semi-field conditions. Moreover, 
results showed that Heater® exhibited the highest toxic 
effect according to obtained LC50 values. These results 
agreed with (Abdel-Baky et  al., 2019; El-Sheikh, 2015; 
Khatun et  al., 2015). In addition, the 2nd instar larvae 

Table 6  Effect of the tested compounds on Chitinase activity, α- and β- esterases in 4th instar larvae of S. littoralis after treatment with 
LC50

Means in the same column with the same letter(s) are not significantly different. (P < 0.05) (Tukey’s Multiple Range Test)

b.w., body weight

***Highly significant effect

Tested compounds α-esterase (μg α-naphthol/min/g b.w.) (Mean ± S.E.) β-esterase
(μg β-naphthol/
min/g b.w.) 
(Mean ± S.E.)

Heater
(Lufenuron + Emamectin benzoate)

221.3 ± 0.9a 250.6 ± 0.6a

Pasha
(Emamectin benzoate)

197.6 ± 0.3c 216 ± 0.5c

Cymax
(Lufenuron)

205.3 ± 0.9b 220.6 ± 0.6b

Control 162 ± 1.1d 210.3 ± 0.7d

Df 3 3

F value 838.35802 837.97619

P 0.0000 *** 0.0000 ***

Table 7  Effect of the tested compounds on Chitinase activity, 
and GST activity 4th instar larvae of S. littoralis after treatment 
with LC50

Means in the same column with the same letter(s) are not significantly different. 
(P < 0.05) (Tukey’s Multiple Range Test)

***Highly significant effect

Tested compounds Chitinase activity
(μg NAGA/min/g 
b.w.) (Mean ± S.E)

GST activity 
(µmole/min/ml)
(Mean ± S.E)

Heater
(Lufenuron + Emamectin benzo‑
ate)

243.6 ± 1.9a 240.3 ± 0.3a

Pasha
(Emamectin benzoate)

211.3 ± 0.7c 231.6 ± 0.9b

Cymax
(Lufenuron)

234 ± 0.5b 210.3 ± 0.3c

Control 204.33 ± 0.9d 193.6 ± 1.9d

df 3 3

F value 275.25926 399.73333

P 0.0000 *** 0.0000 ***
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were more susceptible than the 4th instar larvae. This 
may be due to differences in size and defense mecha-
nisms between instars. This was well documented previ-
ously (Abdu-Allah, 2011; Bengochea et al., 2014; Qayyum 
et  al., 2020). Furthermore, the obtained results showed 
that the total proteins, total carbohydrates, and total 
lipids were decreased due to treatment with the LC50 of 
tested compounds. The changes in energy reserves such 
as carbohydrates, lipids, proteins, and glycogen indicate 
the susceptibility of the insect to insecticide and its func-
tion alterations (Piri et al., 2014). Proteins are important 
for individual-level fitness associated traits such as body 
size, growth rate, and fecundity, and at higher levels of 
organization they have been linked to population dynam-
ics, life histories, and even biological diversification 
(Fagan et  al., 2002). Reduction in total proteins may be 
attributes to the high toxicity of tested compounds either 
in mixture (Heater) or solitary (Pasha® and Cymex®). In 
addition, the decreased content of proteins could be due 
to the breakdown of protein into amino acids, so with 
the entrance of these amino acids to tricarboxylic acid 
cycle (TCA) as a keto acid, they will help supply energy 
for the insect. So, protein depletion in tissues may con-
stitute a physiological mechanism and might play a role 
in compensatory mechanisms under insecticidal stress to 
provide intermediates to the TCA cycle by retaining free 
amino acid content in hemolymph (Nath et  al., 1997). 
These results agreed with (Abdel-Hafez & Osman, 2013; 
Assar et al., 2016; Kola et al., 2015; Saleh & Abdel-Gawad, 
2018; Talleh et al., 2020) who detected reduction in solu-
ble protein contents when treated different insects with 
emamectin and IGRs insecticides. Carbohydrates are an 
important source of energy for insects. Carbohydrates 
may be converted to lipids and may contribute to the 
production of amino acids. Many carbohydrates such as 
sugars are powerful feeding stimulants (Genç, 2006). The 
carbohydrate reduction may be because the increased 
metabolism under toxicant stress. The carbohydrate 
reduction suggests the possibility of active glycogen-
olysis and glycolytic pathway to provide excess energy 
in stress condition (Abdel-Hafez & Osman, 2013; Balan 
et  al., 2008; Franeta et  al., 2018; Vojoudi et  al., 2017). 
Our results were concurrent with (Abdel-Mageed et al., 
2018; Assar et al., 2016; El-Sobki & Ali, 2020; Hamadah 
et al., 2015; Kola et al., 2015; Osman et al., 2015; Saleh & 
Abdel-Gawad, 2018) who found reduction in total carbo-
hydrate contents in different insects after treatment with 
sublethal concentrations of different insecticides. Lipids 
in living organisms consist of free and bound fatty acids, 
short and long chain alcohols, steroids and their esters, 
phospholipids, and other groups of compounds. Insects 
are able to convert carbohydrates into lipids, and many 

insects can synthesize lipids and accumulate them in 
fat body tissue. Fatty acids, phospholipids, and sterols 
are components of cell walls in addition to having other 
specific functions (Piri et al., 2014). Similar reduction in 
total lipid contents were also reported when treated S. 
littoralis larvae with emamectin and IGRs (Assar et  al., 
2016; Awadalla et al., 2017). The reduction in total lipid 
contents could be due to that the detoxification process 
in larvae, demands the transformation of large quan-
tity of consumed food into energy after treatment with 
insecticides (Xu et al., 2016). In addition, treatment with 
the LC50 of the tested compounds increased the activ-
ity of the non-specific esterases compared to control. 
The esterase enzymes belong to the detoxifying enzymes 
which are responsible for the detoxification of any for-
eign substance in insect’s body. Moreover, esterase is 
an important detoxifying enzyme which hydrolyzes the 
esteric bond in any toxicant. Also, esterase is one of the 
enzymes showing the strongest reaction to environmen-
tal stimulation (Hemingway & Karunaratne, 1998). Their 
high activity may be an indication of the insect’s response 
to body intoxication and may be consider as a remark of 
resistance development (Ahmed & Freed, 2021; Chen 
et al., 2017; Serebrov et al., 2006). Furthermore, it is well 
known that any infectious disease for insect regardless 
of the infection-causing factor, leads to increased activ-
ity of detoxifying enzymes in general, and the esterases in 
particular (Zibaee, Bandani, et al., 2009; Zibaee, Bandani, 
et  al., 2009; Zibaee, Sendi, et  al., 2009; Zibaee, Sendi, 
et  al., 2009). The obtained results agreed with (Abdel-
Baky et al., 2019; El-Helaly et al., 2020; Korrat et al., 2012; 
Pineda et al., 2007) as treating S. littoralis larvae with sub-
lethal concentration of emamectin benzoate and IGRs. 
Over and above, results revealed significant increase in 
GST activity due to treatment. The exposure to sublethal 
doses of insecticides will activate immune response and 
induce detoxifying enzymes such as glutathione S-trans-
ferases that are responsible for insecticide tolerance or 
resistance (Vojoudi et al., 2017). These enzymes degrade 
the toxic chemicals in insects before reaching the tar-
get sites (Bogwitz et  al., 2005). GST gained its impor-
tance from its role in the degradation of insecticides and 
toxic substances. In addition, GST takes part in metabo-
lite removal, protection of tissues from damage by free 
radicals, and may play a role in protecting insects from 
pathogen infection and toxicants (Hayes et al., 2005; Pap-
adopoulos et al., 2000). The increased GST may be due to 
overproduction induced by the treatment with the tested 
compounds as a protective mechanism against those 
compounds (Ismail, 2020; Kristensen, 2005). Our results 
were correspondence to (Ahmed & Freed, 2021; Franeta 
et al., 2018; Vojoudi et al., 2017) when treating different 
insects with insecticides.
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Conclusion
In conclusion, the results showed that the emamectin 
benzoate and lufenuron could be safe and effective sub-
stitute for conventional insecticides either applied solely 
or in combination. In addition, the mixture of both active 
ingredient has a high initial kill against the 2nd and 4th 
instar larvae which can help lowering the quantity of the 
applied compounds.
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