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Abstract

Background: Chemicals have deleterious effect on the environment. The wide use of nanomaterials as products for
plant protection, fertilizers, and also in water purification leads to the release of these materials to the environment.
Terrestrial gastropods including snails and slugs have the ability to accumulate heavy metals in their bodies. The
present study evaluates the toxic effect of zinc oxide nanoparticles on the terrestrial slug Lehmannia nyctelia. Zinc
oxide nanoparticles (ZnO NPs) were prepared by thermal decomposition method. ZnO NPs are characterized by X-
ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and
ultraviolet-visible spectroscopy (UV). Slugs were treated with three different concentrations of ZnO NPs.

Results: A total of three animals died by the end of the experiment. Many histological alterations were detected
after exposure to different concentration of ZnO NPs.

Conclusions: The obtained histological alterations prove the toxic effect of ZnO NPs on the animal under study.

Background
Molluscs are considered as one of the important animals
in the food chain and noticed as agricultural pests. Toxic
chemicals produce harmful effect on terrestrial gastro-
pods at the cellular level (Boer et al., 1995; Hernadi
et al., 1992). At the same time, they possess special
mechanisms to get rid of several harmful chemicals
which accumulated in their tissues (Ferner, 2001).
Slugs are considered as a great threat to many of the

temperate horticultural crops. Seedlings are very sensi-
tive to slug as if they cause a little amounts of damage to
the growing tips of seedlings, this will lead to plant death
(Moens & Glen, 2002; Nash et al., 2007).
Slug Lehmannia valentiana is a pest which result in

many troubles to greenhouse. The common method to
control this slug is the chemical molluscicides. The
chemical molluscicides may cause undesirable side

effects such as toxicity of non-target organisms, contam-
ination of food and environment (Jeong et al., 2012).
Terrestrial gastropods are one of the most efficient ac-

cumulators of metals and they are considered as bio-
indicators to environmental pollution (Pihan & de Vau-
fleury, 2000; Snyman et al., 2005; Viard et al., 2004). Ter-
restrial snails and slugs have a great capacity of the
accumulation and magnification of heavy metals and are
considered important species to monitor the bioavail-
ability of metallic components in the soil if they com-
pared to other invertebrates (Coeurdassier et al., 2000;
Lanno & Mc Carty, 1997; Wensen et al., 1994).
Recently, the industrial development in agricultural

field increased rapidly and leads to inorganic and organic
contamination from harmful heavy metals and chemicals
to the terrestrial and aquatic ecosystems. These chemi-
cals show deleterious effect on aquatic and terrestrial en-
vironment (Davidson et al., 2011; Pack et al., 2014;
Sanchez, 2008).
Nanomaterials were widely used in agriculture during

the last 10 years (Buzea & Pacheco, 2017; Gogos et al.,
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2012). They were using as plant protection products, fer-
tilizers, water purification, for soil improvement, and
pollutant remediation (Parisi et al., 2015). In many cases,
nanoparticles (NPs) are applied to the soil directly as a
fertilizer or in the form of an aerosol (Sturikova et al.,
2018) while seeds are mostly soaked in aqueous NP sus-
pension (Lin & Xing, 2007; Segatto et al., 2018). In the
future, technological application of NPs may be un-
desired as they are released to the environment and dif-
fused in the soil due to their small size (Kaegi et al.,
2008).
Zinc oxide nanoparticles (ZnO nanoparticles) are in-

teresting materials due to their unique electrical and op-
tical properties, their wide-band semiconductor, and
they are suitable for many applications (Mishra et al.,
2011). ZnO NPs are useful in environmental remediation
due to their high capabilities for degradation and elimin-
ation of pollutants in air or water due to their strong
physical adsorption and their chemical catalytic proper-
ties (Jing et al., 2001). Zn ONPs are used as antimicro-
bial agent, and also used in cosmetics, sunscreens, and
coatings (Ali et al., 2012). Due to the increasing use in
consumer products, ZnO NPs will be found in the at-
mospheric, terrestrial, and aquatic environments (Ali
et al., 2012; Sales, 2013; Service, R.F., 2008).
The present study aimed to evaluate the toxic effect of

ZnO NPs on theterrestrial slug Lehmannia nyctelia.

Methods
Chemicals and reagents
All chemical and reagents purchased were analytical
grade. Zinc nitrate hydrate was purchased from Alfa
Aesar (Ward Hill, MA), Ethanol, abs. 100% a.r. was pro-
cured from Chem-Lab., Belgium.

Preparation of ZnO nanoparticles
The zinc oxide nanoparticles (ZnO NPs) were prepared
by thermal decomposition method as described by Shan-
kar et al. (2013). Three grams of zinc nitrate were taken
and fired in a furnace (air atmosphere) for 3 h at 500 °C.
It was further grinded in a mortar to make a fine powder
of ZnO NPs.

Characterization of ZnO NPs
ZnO NPs were characterized by X-ray diffraction (XRD),
Fourier transform infrared spectroscopy (FTIR), scan-
ning electron microscopy (SEM), and ultraviolet-visible
spectroscopy (UV).

X-ray diffraction (XRD)
The structure of the nanoparticles was investigated by a
Philips X-ray diffractometer (model PW 1720) at room
temperature, with a step of 0.06°, in the range of 4° ≤ 2θ
≤ 89.89°. The average crystallite sizes were calculated by

applying Scherrer’s equation: D = Kλ/βcosθ, where K is
the shape factor whose value is taken as 0.89, λ is the
wavelength of Cu Kα radiation (λ = 1.54178), and β is
the corrected full width at half maximum (FWHM) of
the diffraction peak and θ is the diffracting angle.

Fourier transform infrared spectroscopy (FTIR):
Infrared spectra were recorded on a Thermo Fisher–
model: Nicolet iS10 FTIR spectrometer in a wave num-
ber range 4000–500 cm−1.

SEM and TEM
The morphology of the ZnO NPs powder sample was in-
vestigated by scanning electron microscopy (SEM; JEOL
[model: JSM 5400LV]) and transmission electron mi-
croscopy (TEM; JEOL [model: JEM-100 CXII]).

UV-visible spectroscopy
The UV-vis absorption measurements of ZnO NPs were
recorded in the range 200–800 nm by PerkinElmer;
model: LAMBDA 750 UV/Vis/NIR Spectrophotometer.
The synthesized ZnO NPs powder sample was dispersed
in ethanol and optical characterizations were executed.

Collection of specimens
The experimental work was carried out using specimens
of Lehmannia nyctelia, collected during autumn from
Assiut University farm, Assiut Governorate, Egypt. Slugs
were kept in normal laboratory conditions, maintained
in plastic containers containing soil obtained from their
natural habitat and fed with fresh lettuce daily.

Experimental design and ZnO NPs exposure
For the experiment, the acclimatized healthy slugs with
an equal body weight (0.6 gm) were randomly distrib-
uted into four groups (control and three treated groups).
Each group consists of 10 individuals and was kept in
plastic containers containing the same weight of soil and
each container covered with perforated cloth for ventila-
tion. The control slug’s group fed on fresh lettuce
impressed in 10 ml distilled water.
However, the treated groups were fed on fresh lettuce

impressed in different concentrations of ZnO NPs (0.01
g/10 ml dw, 0.02/10 ml dw, 0.05/10 ml dw, modified
from Fahmy and Abdel-Ghaffar (2014). Exposure period
was 10 days, during which the slugs were subjected twice
to the contaminated food with the previously mentioned
concentrations of ZnO NPs. At the end of the experi-
mental period, surviving slugs were used for histological
studies. Died animals were counted and removed.
Slugs were fixed in neutral formalin and prepared for

histological study. Seven micrometers transverse sections
were prepared and stained with hematoxilin and eosin
(HE). Sections were examined by light microscope. The
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organs under study are the digestive gland, salivary
glands, and hermaphroditic glands.

Results
Characterization of ZnO nanoparticle
X-ray diffraction (XRD)
The ZnO NPs were characterized by X-ray diffraction
(XRD). A definite line broadening of the XRD peaks in-
dicates that the prepared material consists of particles in
the nanoscale range (Fig. 1a). All the diffraction peaks
can be indexed to the ZnO hexagonal wurzite structure
(JPCDS card number: 04-008-8196). The average particle
size of the sample was found to be 21 nm which is de-
rived from the full width at half-maximum (FWHM) of
more intense peak corresponding to (Shankar et al.,
2013) plane located at 36.34° using Scherrer’s formula.

FTIR analysis
Figure 1b shows the FTIR spectrum of the zinc oxide
nanoparticles. The special peak at 500 cm−1 owing to
Zn-O vibrational mode (18-19); another strong band at
1013 cm−1 may be assigned to the stretching and bend-
ing vibrational modes of the Zn-O bonds, respectively.

Electron microscopic investigation of ZnO NPs
The morphology of ZnO NPs was characterized by SEM
and TEM techniques. Figure 2a shows the SEM image;

while Figure 2b presents a typical TEM image of ZnO
NPs. It is clear that in this case a ZnO NPs was success-
fully prepared.

The UV-Vis spectrum
The UV-Vis spectrum of ZnO NPs is shown in Fig. 2c.
Confirmation of the synthesized ZnO product in nano-
scale was exhibited by the highly red shifted absorption
maximum occurring around 400 nm (Datta et al., 2017).
No other peaks were observed in the spectrum, confirm-
ing that the synthesized product was ZnO only.

Results of histology
At the end of the experiments, three animals died; one
after exposure to concentration 0.02 g/10 ml dw ZnO
NPs and two died after exposure to 0.05 g/10 ml dw
ZnO NPs.

Histological observation of the digestive gland (Fig. 3a–d)

Untreated slugs The digestive gland of the slug com-
poses of lobes. Each lobe composes of large number of
digestive tubules separated with loose connective tissue.
Each tubule is surrounded externally with circular
muscle layer. The digestive acini are lined with simple
epithelial cells which arranged around narrow irregular
lumen (Fig. 3a).
There are four different cell types were observed lining

the digestive gland tubules. The two main cell types are
digestive and calcium cells. The third type of cells is ex-
cretory cells, while the fourth type comprises thin cells
which distribute randomly between the different cells.
These cells have the following characteristic features:
Digestive cells
They are the most abundant cell type in the digestive

gland tubule epithelium. These cells are observed as a
simple columnar epithelium with flattened or slightly
broad apical surfaces and narrow base. They appear
under the light microscope with highly vacuolated
cytoplasm.
Calcium cells
These cells are fewer than digestive cells. They are pyr-

amidal in shape with narrow distal end and broad base.
Calcium cells are basophilic cells, mostly have large
rounded nuclei.
Excretory cells
They are basophilic cells and globular in shape.
Thin cells
These cells are narrow extending to the full height of

the epithelium.

Slugs exposed to 0.01 g/10 ml dw ZnO NPs The epi-
thelial cells became shorter. Some of them are ruptured
and lost their content. The lumen in some acini of

Fig. 1 a X-ray diffraction patterns of ZnO NPs. The peaks refer to the
Wurtzite hexagonal structure in the reference data (JCPDS No. 04-
008-8196). b FTIR Spectra of ZnO NPs
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digestive gland increased in size and filled with the cells
remains (Fig. 3b).

Slugs exposed to 0.02 g/10 ml dw ZnO NPs Some di-
gestive tubules were separated from the surrounding
muscle layer. Many cells are ruptured and lost their con-
tents. Large vacuoles are detected in many cells. The
lumen of the acini became narrow (Fig. 3c).

Slugs exposed to 0.05 g/10 ml dw ZnO NPs: The con-
nective tissue among acini is destroyed leaving large
empty spaces. Most of the epithelial cells were rup-
tured. The acini became narrow and contain cells re-
mains (Fig. 3d).

Histological observations on the salivary gland:

Untreated slugs (Fig. 4a) The examination of the un-
treated slug’s salivary gland showed that it consists of
three types of glandular cells. These types showed great
variation in their contents and staining properties; type
(I) has purple color, type (II) has a blue color and type
(III) is a vacuolated cell.

Slugs exposed to 0.01 g/10 ml dw ZnO NPs The saliv-
ary gland showed many histological changes (Fig. 4b).

Many cells lost their contents and the vacuolated cells
increased in number.

Slug exposed to 0.02 g/10 ml dw ZnO NPs Many
histological changes were observed (Fig. 4c). Most of the
acidophilic and vacuolated cells lost their shapes and
their nuclei became smaller in size, flattened, and mar-
ginal in position. Large spaces were appeared among dif-
ferent cell types.

Slug exposed to 0.05 g/10 ml dw ZnO NPs Acido-
philic cells increased in number and most of them be-
came smaller in size, with flattened and marginal nuclei
(Fig. 4d). Many vacuolated cells lost their content and
became empty cells.

Histological observation of gonads: (Fig. 5a–d)

Untreated slugs The hermaphroditic gland of the slug
is composed of a small number of lobes; each lobe con-
sists of various acini separated by thin interstitial con-
nective tissue and enveloped by squamous epithelial
cells (Fig. 5a). Walls of the acini are lined with clusters
of germinal epithelial cells and all acini contain different
stages of developed cell as a result of both oogenesis and
spermatogenesis.

Fig. 2 a SEM image of ZnO NPs. b TEM image of ZnO NPs. c UV-Vis analysis of ZnO NPs
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Slug exposed to 0.01 g/10 ml dw ZnO NPs Degenera-
tive changes were observed in most of different stages of
gametogenesis (Fig. 5b). The squamous epithelial layer
that surrounded the acini is ruptured in some places.
Large empty spaces appeared among the acini. Blood
cells infiltration is detected. Some sperms are
degenerated.

Slug exposed to 0.02 g/10 ml dw ZnO NPs Signs of
degeneration in different gametogenesis stages were de-
tected. They were represented by fibrosis and appear-
ance of many spaces in the acini lumen, in addition to
appearing large spaces among acini (Fig. 5c).

Slug exposed to 0.05 g/10 ml dw ZnO NPs The early
gametogenesis stages increased in number and aggre-
gated in clusters (Fig. 5d). Many of the gamete’s stages
lost their shapes and degenerated. Fibrosis in the lumen
of acini was increased.

Discussion
Land snails are considered as serious pests in filed crops
in many parts of the world. They result in damage and
great losses in various vegetation fields (El-Okda, 1981;
Gabr et al., 2007; Ramzy, 2009). Zinc oxide (ZnO) con-
siders one of the most used types of metal-based NPs,
with the third largest annual production in volume

(Merdzan et al., 2014; Romero-Freire et al., 2017). It also
uses as antibacterial agent and fertilizer (Ma et al., 2013;
Parisi et al., 2015; Segatto et al., 2018).
Results obtained from infrared spectra that recorded

in the present study showed that the special peak at 500
cm−1 owing to Zn–O vibrational mode(18-19); another
strong band at 1013 cm−1 may be assigned to the
stretching and bending vibrational modes of the Zn–O
bonds, respectively (Kumar et al., 2015; Punnoose et al.,
2014). The FTIR spectra of ZnO NPs showed that the
high purity of ZnO NPs was prepared by thermal de-
composition method.
The present histological investigations of the digest-

ive gland of land slug Lehmannia nyctelia confirm
the existence of four cell types: digestive, calcium, ex-
cretory, and thin cells. This finding is agreed with re-
sults of Hamed et al., 2007; Abo Bakr (2011) and
Yousef et al. (2011) in the land snail, Eobania Vermi-
culat. Sharaf et al. (2015) as well as Mustafa and
Awad (2018) revealed that the digestive gland is con-
sisted of three types of cells in the land snail Heli-
cella vestalis and in the slug Lehmannia marginata,
respectively. Moreover, the digestive gland was re-
ported to be composed of two cell types only in both
the land snail Eobania vermiculata ( Zaldibar et al.,
2007) and the slug Limax maximus (Abdel-Haleem &
EI-Kassas, 2013).

Fig. 3 Photomicrograph of sections through the digestive gland of a untreated slugs showing: connective tissue (CT), digestive cells (DC), thin
cells (TC), calcium cells (CC), and lumen (L). b Slugs treated with 0.01 ZnO NPs showing: large lumen (L), shorter cells (SC), and ruptured cells (RC).
c Slugs treated with 0.02 ZnO NPs showing: vacuoles(V), ruptured cells (RC), and separated muscle (arrows). d Slugs treated with 0.05 ZnO NPs
showing: remains cells (arrows), vacuolated cells (VC), ruptured cells (RC), and space (S)
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In slugs and snails, the digestive gland is the major site
for metal accumulation (Berger & Dallinger, 1993; Mari-
go’mez et al., 2002), and plays a critical role in metal de-
toxification (Kammenga et al., 2000). In the present
study cytoplasmic vacuolation and degeneration was no-
ticed in the digestive acini of treated slug Lehmannia
nyctelia. These results are in accordance with that ob-
tained by Abdel-Haleem and EI-Kassas (2013) who stud-
ied the effect of three plant extracts on Limax maximus.
Additional histological changes such as tubular disrup-
tion in the digestive tubules were observed. Sharaf et al.
(2015) reported the same result in the digestive gland of
land snail Helicell vestalis treated with some pesticides.
Bour et al. (2015) suggested that when NPs are

ingested, they may get stuck in the digestive tract and
not be absorbed but promote physiological changes that
cause damage to the organism, such as a decrease in the
absorption of nutrients. Hooper et al. (2011) raised the
possibility that a fraction of Zn accumulated in Eisenia
veneta organisms through NPs is present in the nano-
form, remaining intact inside the cell but still affecting
its metabolism.
In the present study, the salivary glands of Lehmannia

nyctelia revealed that there are three different cell types:
type (I) purple colored cells, type (II) blue colored cells,
and type (III) vacuolated cells. These results are in ac-
cordance with Mustafa and Awad (2018) who revealed

that the salivary glands of L. maximus possess three
types of cells. In contrast, Abdel Gawad et al. (2018) re-
ported four different cell types comprised mucocytes I,
mucocyte II, vacuolated cells, and granular cells in saliv-
ary gland of Eobania vermiculata.
The present histological observations in the cells of

the salivary gland of Lehmannia nyctelia treated with
ZnO NPS revealed cytoplasmic vacuolation and disinte-
gration of the digestive tubules epithelial cells. These
findings are similar to the results reported by Mustafa
and Awad (2018) who found vacuolated cytoplasm and
degenerated nuclei in the cells of salivary gland of slug
Limax maximus after treatment with thymol.
In the present work, the histological alterations when

ovotestis of the Lehmannia nyctelia is exposed to ZnO
NPs, the disruptions within acini and gametic cells were
observed. Elsewhere, some alterations were observed
such as, spermatocytic degeneration, disruptions of oo-
cytes, and appearing fibrosis in the lumen of acini.
Wangsomnuk et al. (1997) noticed the same results in
Indoplanorbis exustus. Additionally, Zhou et al. (1993)
noticed reduction in the number of spermatozoa and oo-
cytes in Biomphalaria glabrata after the exposure to
niclosamide.
Dimkpa et al. (2011) and Heggelund et al. (2014) de-

cided that accumulation of NPs causes disorders in the
cells which led to toxicity through the formation of

Fig. 4 Photomicrograph of sections through the salivary gland of a untreated slugs showing three types of cells: (I) purple colored cells, (II) blue
colored cells, and (III) vacuolated cells. b Slugs treated with 0.01 ZnO NPs showing: empty cells(EC). c Slugs treated with 0.02 ZnO NPs showing
acidophilic cells with flattened marginal nuclei (arrows). d Slugs treated with 0.05 ZnO NPs showing spaces between cells (arrows)
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reactive oxygen species (ROS). Pinto et al. (2003) re-
vealed that the reactive oxygen species (ROS) has toxic
effect in the biological system, which disrupts normal
cellular processes.
The present histopathological examinations indicated

that, ZnO NPs induced toxicity in cells of digestive
gland, salivary glands, and hermaphroditic gland in Leh-
mannia nyctelia.

Conclusion
In conclusion, ZnO NPs caused denaturation of the ani-
mal organs which lead to abnormal functions of these
organs and finally affect its fitness. The extensive use of
ZnO NPs will lead to destructive effects on animals and
will pollute the environment. The present study indi-
cated that Lehmannia nyctelia can be used as bio-
indicator to the pollution of the terrestrial environment.

Abbreviations
ZnO NPs: Zinc oxide nanoparticles; ROS: Reactive oxygen species;
FTIR: Fourier transform infrared spectroscopy; FTIR: Fourier transform infrared
spectroscopy; SEM: Scanning electron microscopy; TEM: Transmission
electron microscopy; UV-visible spectroscopy: Ultraviolet-visible spectroscopy
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