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Abstract 

Background:  Allatotropin, a neuropeptide found in several invertebrates indirectly regulates vitellogenesis by stimu-
lating juvenile hormone biosynthesis by the corpora allata. Here, we cloned and expressed the gene encoding allato-
tropin of Spodoptera litura (tobacco cutworm), a polyphagous pest in the Asian tropics. This study is aimed at studying 
the effect of recombinant protein on egg-laying in females of S. litura as it could be used as a method to control the 
pests from a reproductive perspective.

Results:  The protein encodes a full-length open reading frame consisting of 173 amino acids and was rich in arginine 
(10%) and glutamic acid (9.3%). The theoretical pI of the protein was 5.47 and a hydrophobic signal peptide of 22 resi-
dues was predicted. The recombinant allatotropin was expressed in Escherichia coli BL21 (DE3) and purified by nickel 
exchange chromatography. The molecular weight of the recombinant protein was about 37 kDa and expression levels 
up to 5.3 mg/ml were achieved. Injection assay in vitro indicated that allatotropin induces egg-laying during the first 
scotophase after treatment in females of Spodoptera litura.

Conclusion:  Allatotropin induces egg-laying in female moths and could be a potential molecule for the develop-
ment of control strategies against Spodoptera litura. In this strategy, the protein if delivered to the females before mat-
ing may lead to accelerated egg deposition much before she encounters the male moths, thus the population being 
checked as the eggs deposited by the females are unfertilized. Thus, the present work could lead to the development 
of a protein based biopesticide resulting into a species-specific and an eco-friendly way of pest control.
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Background
Allatotropin, a member of the family of myoactive neu-
ropeptides found in several invertebrate phyla stimulates 
juvenile hormone (JH) biosynthesis in corpora allata 
(CA) (Elekonich & Horodyski, 2003). Juvenile hormones 
are crucial in all insect developmental and reproductive 
events including embryogenesis, larval moulting, meta-
morphosis, vitellogenin synthesis, vitellogenin uptake by 

the ovaries and ovarian development, spermatogenesis 
and growth of male accessory glands (Gade et al., 1997; 
Koeppe et al., 1985; Nijhout, 1994; Riddiford, 1994). Alla-
toregulating neuropeptides are numerous and have been 
localized in various insect tissues. Among the identified 
allatotropins, Manse-AT (AT 1) was the first peptide to 
be isolated from the adult heads of Manduca sexta (Kata-
oka et al., 1989) and later was also known in several other 
insects such as Lacanobia oleracea (Audsley et al., 2000) 
and Galleria mellonella (Boguś & Cymborowski, 1984). 
In the greater wax moth G. mellonella, AT 1 peptide con-
sists of 13 amino acids and stimulates JH biosynthesis in 
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the CA in a dose-dependent manner. The terminal steps 
of JH biosynthesis were reported to be affected by AT 1 in 
larval workers of the honey bee, Apis mellifera (Rachinsky 
et al., 2000). Furthermore, AT 1 was shown to be potent 
stimulators of heart rate, muscle contraction and gut per-
istalsis (Koladich et al., 2002). It also exerts an inhibition 
in the ion transport across the midgut of Manduca sexta 
(Lee & Horodyski, 2002; Lee et al., 1998). In the tomato 
moth, Lacanobia oleracea, injection of AT 1 peptide into 
the sixth instar larvae led to increase in mortality rate, 
reduction in body weight and also delay in pre-pupal 
development as a consequence of JH synthesis (Audsley 
et  al., 2001). Another allatotropin reported as Spofr-AT 
2 was identified and characterized by cloning the cDNA 
encoding Manse-AT in Spodoptera frugiperda (Abdel-
latief et al., 2004). The role of Spofr-AT 2 in controlling 
the synthesis and transfer of JH during mating using the 
RNA interference technique was reported by Hassanien 
et  al. (2014) in Spodoptera frugiperda. Here, the knock-
down of the AT 2 gene resulted in low levels of JH trans-
ferred from male to female as well as a lower number of 
eggs deposited. In many Lepidopterans, JH is crucial for 
egg maturation and/or production (Ramaswamy et  al., 
2000; Shu et al., 1998). So far, there are no reports on alla-
toregulating neuropeptides or their functions associated 
with egg production in Spodoptera litura.

Spodoptera litura Fabricius (Lepidoptera: Noctuidae) is 
considered as a serious agricultural pest attacking more 
than 120 host plants belonging to 44 families (Qin et al., 
2004) wherein 40 species are known from India (Garad 
et al., 1984). The main crop species attacked by Spodop-
tera litura in the tropics include taro, tobacco, flax, cot-
ton, jute, groundnuts, maize, alfalfa, rice, soybeans, tea, 
and vegetables (Chari & Patel, 1983). Due to pesticide 
resistance and environmental problems arising from the 
long-term application of synthetic chemical pesticides 
against the pest (Tong et  al., 2013), the development of 
novel biopesticides has become a major research inter-
est. At present, the target for pest control are proteins/
peptides especially the behaviour modifying peptides or 
neuropeptides in insects (Alstein & Nässel, 2001; Len-
aerts et  al., 2019). Fónagy (2006) in his review grouped 
well-known neuropeptides such as bombyxin (Ishizaki 
et  al., 1983), allatotropins/allatostatins (Kataoka et  al., 
1989; Schoofs et al., 2017; Stay et al., 1995), pheromone 
biosynthesis activating neuropeptide (Raina et al., 1989), 
Adipokinetic hormone (Stone et al., 1976), trypsin modu-
lating oostatic factor (Borovsky, 2003; Borovsky et  al., 
1998) and so on, into four major classes such as growth 
and development, reproduction, metabolism and home-
ostasis according to function, structure, mode of action 
and discussed their potential roles in pest control. Thus, 
with this background, the present study was conceived to 

clone and express the allatotropin of Spodoptera litura in 
Escherichia coli. The E. coli expression system acts as a 
rapid and simple system for the expression of recombi-
nant proteins in a large scale at a short time. However, 
the disadvantage of this system includes the formation of 
inclusion bodies and often requires the use of denatur-
ants at a high concentration to solubilize these proteins. 
Hence, in this study a pET-32a + vector series (Nova-
gen, Germany) was designed for expression of peptide 
sequences fused with the 109 aa Thioredoxin tag (Trx-
tag) to avoid the formation of inclusion bodies. The effect 
of recombinant protein on egg-laying was further studied 
by an injection method. Injection method has often been 
used by several researchers to study the effect of purified 
peptides/proteins like the studies in Drosophila mela-
nogaster (Monsma & Wolfner, 1988), Spodoptera litura 
(Yu et  al., 2014), Aedes aegypti (Fuchs & Hiss, 1970); 
Bombyx mori (Ando et  al., 1996), Helicoverpa zea and 
Helicoverpa armigera (Eliyahu et al., 2003; Kingan et al., 
1993) and so on. Finally, the outcome of this study could 
lead to the production of a protein-based biopesticide for 
controlling the pests from a reproductive perspective.

Methods
Insects
The parental stock of Spodoptera litura (NBAII-MP-
NOC-02) was obtained from National Bureau of Agri-
cultural Insect Resources, Bengaluru. The neonates 
were initially reared in groups on an artificial diet 
(Divakara et  al., 2011) and when the larvae reached 
3rd instar, they were transferred into individual rearing 
vials, until pupation to avoid cannibalism. The insects 
were maintained under laboratory conditions with a 
temperature of 25 ± 2 °C and natural light–dark cycles. 
The pupae collected were disinfected with 0.02% for-
maldehyde, sexed and maintained separately accord-
ing to their peripheral characters. Cotton dipped in 
10% honey solution was provided as food to the adult 
female moths.

Characterization of the allatotropin gene
The nucleotide sequence of allatotropin isoform X2 
(NCBI Reference Sequence: XM_022974503.1) identi-
fied from Spodoptera litura genome was translated into 
all six reading frames using ExPASy translate tool. The 
longest reading frame with the stop codon was selected 
for in-silico analysis of the theoretical pI and amino acid 
composition using Protparam tool provided by ExPASy 
(Gasteiger et al., 2005). SignalP 4.0 program was used to 
predict the presence of signal peptide cleavage sites in the 
amino acid sequence (Petersen et al., 2011).
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Gene cloning
The full-length coding sequence of allatotropin was 
optimized using the codon frequency table of E. coli 
(Kazusa DNA Research Institute, Japan), while the 
amino acid sequence was kept unaltered except for 
the addition of a methionine at the N-terminal as a 
start codon. A pair wise alignment of the optimized 
sequence was performed with the allatotropin refer-
ence sequence (Accession No. XM_022974503.1) using 
EMBL-EBI pair wise alignment tool based on Needle-
man-Wunsch algorithm. The pET-32a + vector series 
(Novagen, Germany) fused with the 109 aa Thioredoxin 
tag (Trx-tag) was designed for expression of the protein 
to assist proper folding of the protein and to keep them 
from precipitating. The gene was chemically synthe-
sized without signal peptide sequence containing cleav-
age site between positions 22 and 23 before ligation 
into pET32a+ cloning vector. The signal sequence from 
the gene was removed in order to express a mature pro-
tein and moreover E. coli translocation machinery can-
not recognize the signal peptide native to Spodoptera 
litura. The recombinant plasmid was supplied by Gene 
Universal, USA.

Transformation and expression of allatotropin gene in E. 
coli
The plasmid pET32a+/allatotropin was transformed 
into chemically competent E. coli, BL21 (DE3) cells 
by heat shock and colonies were grown on LB culture 
medium containing ampicillin (100  µg/ml) (Dagert & 
Ehrlich, 1979; Green et al., 2012). Positive clones were 
confirmed by colony PCR using universal T7 primers. 
PCR (30 cycles) was performed as follows: denatura-
tion at 94  °C for 1  min, annealing at 50  °C for 1  min, 
and extension at 72  °C for 1.5  min. The recombinant 
plasmid was analyzed on 1% agarose gel and stored at − 
20  °C. The clone harbouring the recombinant plasmid 
was inoculated into 3 ml LB broth containing ampicil-
lin (100 µg/ml) and incubated at 37  °C. One ml of the 
overnight grown culture was added to 100 ml LB broth 
containing ampicillin (100 µg/ml) and was incubated at 
37  °C on a rotary shaker until the OD600 reached 0.3–
0.4. Protein expression was induced by the addition of 
Isopropyl β-d-1-thiogalactopyranoside {IPTG (Sigma)} 
at a final concentration of 1  mM/L directly to the cell 
suspension for 4  h at 37  °C. The resulting cells were 
harvested by centrifugation at 4000 rpm for 10 min and 
freeze-thawed to lyse the cells. This process of freeze-
thawing was repeated thrice and the mixture was cen-
trifuged. The expression of recombinant protein from 
the obtained supernatant was analyzed by SDS-PAGE 
(Laemmli, 1970).

Purification of the recombinant protein
The recombinant protein was purified using His-Tagged 
Bacterial Protein Purification kit (Himedia, India). A 
100 ml induced cell pellet was re-suspended in minimum 
volume of distilled water and the cell lysate was prepared 
by freeze-thawing method. The pre-packed column was 
centrifuged at 1000 rpm for 1 min to devoid the preserva-
tive. The spin column was equilibrated with 0.4  ml of 
Equilibration buffer (10 mM imidazole) and centrifuged 
at 1000 rpm for 1 min. The flow through was discarded. 
This step was repeated once again. The sample contain-
ing the His-tagged protein was loaded onto the pre-equil-
ibrated column and was incubated for 30 min to ensure 
proper binding of the protein to the resin. The column 
was centrifuged at 1000  rpm for 1  min to remove the 
unbound proteins. The column was then transferred to 
a new collection tube and 0.4 ml of wash buffer (25 mM 
imidazole) was added through the column and mixed 
manually be inversion. The column was centrifuged at 
1000 rpm for 1 min and the flow through was discarded. 
This step was repeated twice for a total of three washes. 
The column was again transferred to a new collection 
tube and 0.4 ml of elution buffer (250 mM imidazole) was 
added to the column and mixed thoroughly for 10 min. 
Later the column was placed in a new collection tube and 
centrifuged at 1000 rpm for 1 min. The elution step was 
repeated twice for a total of three individual eluants. The 
purity was checked by SDS-PAGE and the concentration 
was determined using a NanoDrop 2000c Spectropho-
tometer (Thermo Scientific).

Western blotting
Proteins separated by electrophoresis were electroblotted 
onto Nitrocellulose membranes using Tris–glycine buffer 
at 50  V for 1.5  h at room temperature (RT) (Kurien & 
Scofield, 2006). Following a transfer, the membrane was 
blocked for 1 h at RT with 5% BSA in Tris-buffered saline 
(20  mM Tris pH 7.4, 150  mM NaCl and 0.01% Tween-
20). The blot was further incubated for 1.5 h with anti-his 
tag mouse monoclonal antibody (G-Biosciences, USA) 
in the ratio of 1:1500 followed by incubation with Goat 
anti mouse IgG-HRP. The protein-antibody complex 
was developed using the picoLUCENTTM PLUS HRP 
Chemiluminescent kit (G-Biosciences, USA).

Determination of the biological activity
5, 15 and 25  pg/µl of the recombinant protein was 
injected using a Hamilton syringe into the abdomi-
nal cavity through the intersegmental membrane of the 
anesthetized 24  h old Spodoptera litura virgin females. 
Buffer injected virgin females served as control and virgin 
females without being injected were also observed to rule 
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out the effect of the injection. The number of eggs laid 
by each group during the first scotophase after treatment 
was recorded.

Statistical analysis
The experimental data from at least three different exper-
iments are expressed as mean ± SD. Statistical analysis 
was performed using one-way ANOVA followed by Tuk-
ey’s multiple comparison test. A level of p < 0.05 was con-
sidered significant. 

Results
Characterization of the allatotropin gene
The protein sequence was found to be rich in arginine 
(10%) and glutamic acid (9.3%). The total number of neg-
atively charged residues (Asp + Glu) was 27 and the total 
number of positively charged residues (Arg + Lys) was 23. 
The theoretical isoelectric value of the protein was 5.47. 
The SignalP software predicted a hydrophobic signal 
peptide of 22 residues indicating the protein to be secre-
tory in nature with the cleavage site between positions 22 
and 23.

Gene cloning
The codons were optimized as per the codon frequency 
usage of E. coli and the Codon Adaptation Index (CAI) 
value was adjusted to 0.95. The GC content was adjusted 
to the optimum level of 30–70%. A pair-wise alignment 
performed with the allatotropin reference sequence 
(Accession No. XM_022974503.1) using EMBL-EBI pair-
wise alignment tool revealed 62.6% similarity with the 
reference sequence (Fig.  1). The optimized nucleotide 
was artificially synthesized and ligated between EcoRI 
and XhoI restriction sites in pET32a+ vector. Further, the 
recombinant plasmid was transformed into the cloning 
host BL21 (DE3).

Recombinant protein expression
After induction with IPTG, the expression of pro-
tein was checked on SDS-PAGE (Fig.  2). Purification 
of the expressed protein with Ni–NTA resin showed 
that the molecular weight of the recombinant protein 
was ~ 37 kDa (Fig. 3). Immunoblot analysis with an anti-
his tag mouse monoclonal antibody confirmed the iden-
tity of the purified protein (Fig.  4). Moreover, the final 
concentration of the recombinant protein was ~ 5.3  mg/
ml.

Biological activity of allatotropin
The number of eggs laid by the females upon injection 
of the recombinant protein at a concentration of 5, 15 
and 25 pg/µl was 258 ± 49.7, 220 ± 106.5 and 248 ± 63.9 
respectively on the first scotophase after treatment when 

compared to buffer injected virgin females and virgin 
females which were 17 ± 5.1 and 4 ± 3.9 respectively. 
The treatment group was significantly different from 
the control group although no significant difference was 
observed among the treatment groups (Fig. 5).

Discussion
This study was focused on cloning and expression of the 
allatotropin of Spodoptera litura in E. coli. Cloning and 
expression of proteins in E. coli has been the most com-
mon approach to study the proteins which are difficult 
to purify in large quantities from its source. But a major 
drawback associated with the use of E. coli is its property 
to form inclusion bodies of misfolded proteins whenever 
a protein is overexpressed. But this limitation could be 
overcome by the fusion of thioredoxin protein with the 
protein of interest which helps in the solubilization of the 
protein thereby avoiding precipitation of the protein to 
form inclusion bodies (Sachdev & Chirgwin, 1998). Het-
erologous expression of many insect proteins have been 
successfully done, for example, nitrophorins (Champagne 
et al., 1995), chemosensory protein (Zhang et al., 2012), 
vitellogenin (Wu et  al., 2015), chitinase (Esther Shoba 
et  al., 2016) and so on. However, allatotropin, though 
the gene sequence is known, has not been expressed in 
microbial system.

Here, the entire sequence of allatotropin about 1609 bp 
was obtained from the genome of Spodoptera litura. The 
sequence with the coding regions being 519 bp long that 
encodes 173 amino acids was successfully expressed in 
E. coli system along with the Trx-tag. The protein was 
obtained in the soluble fraction without forming inclu-
sion bodies and purified using a Ni–NTA column as the 
protein contains His-tag. The protein expression levels 
were achieved up to 5.3 mg/ml after 4 h of induction with 
IPTG. The effect of allatotropin in inducing egg-laying 
behaviour in Spodoptera litura females was studied by 
injection assay. The experiment performed by inject-
ing the protein into the abdominal cavity of the female 
moths exhibited accelerated egg-laying behaviour unlike 
the other two sets of moths. The number of eggs laid by 
the females injected with 5, 15 and 25 pg/µl of the recom-
binant proteins was not significantly different from each 
other, while they significantly varied from the buffer 
injected and virgin females which laid few eggs during 
the first scotophase of treatment. This shows that very 
low concentration of the protein is sufficient to stimulate 
egg-laying behaviour in Spodoptera litura females, while 
earlier studies by Kingan et al. (1993) have also demon-
strated the activity of pheromone biosynthesis activating 
neuropeptide by injecting only 2 pmol of the peptide into 
Helicoverpa zea females.
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Allatotropins (AT) have been isolated from numer-
ous arthropod species, identified from the sequences 
of cloned genes, or deduced  in-silico  from nucleotide 
sequence databases (Egekwu et  al., 2014; Elekonich & 
Horodyski, 2003; Weaver & Audsley, 2009). Previous 
studies have shown that neuropeptides regulate JH 
biosynthesis at several steps of the synthetic pathway 
(Kamruzzaman et  al., 2020; Wielendaele et  al., 2013). 
Aedes aegypti allatotropin and farnesoic acid probably 
act on the terminal steps of JH biosynthesis (Li et  al., 
2003). Moreover, Manse-AT had stimulatory effects on 
JH I to JH III release through increasing the supply of 

acetyl- and propionyl-CoA precursors (Teal, 2002). JH 
production is stimulated by allatotropins and there is 
a direct correlation between JH titer and the number 
of eggs deposited. In Spodoptera frugiperda, silencing 
the allatotropin gene reduced the oviposition rates in 
adult females (Griebler et al., 2008). A possible mecha-
nism in which the TOR pathway regulates vitellogenin 
(Vg) synthesis was proposed by Lu et al. (2016). In this 
pathway, the signals (AT) activates juvenile hormone 
acid methyltransferase (JHAMT) to methylate JH acid 
into JH further activating Vg synthesis. Lenaerts et  al. 

Fig. 1  Pair-wise alignment of nucleotide sequences using Needleman-Wunsch algorithm
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(2019) in their review have also suggested allatotropin 
to be involved in insect oogenesis.

The mechanism wherein synthesis of brain factors such 
as the allatotropin leads to activation of JH synthesis in 
the CA is well established in several insects. Yet, injec-
tion of allatotropin directly into the hemolymph and its 
effect in female moths has not been studied so far. In 
our study, we have determined the role of allatotropin in 
inducing egg-laying behaviour when artificially injected 
into female moths and we speculate that the allatotro-
pin injected into hemolymph bring about the neces-
sary change either indirectly or directly by traversing 

to CA or ovary respectively (Fig. 6). The virgin females, 
when injected with allatotropin, behaved in a manner 
normally exhibited by the mated females. However, in 
nature, a well-known strategy developed by male insects 
is to transfer accessory gland proteins along with sperms 
to the female reproductive tract during mating, where 
they facilitate several processes that modify female 

Fig. 2  Induction of pET32a + /allatotropin clone analyzed on 12% 
SDS PAGE. Lane 1—Protein marker, Lane 2—Uninduced sample, Lane 
3—Induced sample

Fig. 3  Purification of recombinant protein and its analysis on 12% 
SDS PAGE. Lane 1—Protein marker, Lane 2—Induced sample, Lane 
3—Flow through, Lane 4—Unbound fraction 1, Lane 5—Unbound 
fraction 2, Lane 6—Elaunt 1, Lane 7—Eluant 2, Lane 8—Eluant 3

Fig. 4  Western blotting analysis for confirmation of expressed 
allatotropin. Lane 1—Recombinant protein, Lane 2—Pre-stained 
marker
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post-mating behaviour such as sperm protection, com-
petition, storage and activation (Harshman & Prout, 
1994; Neubaum & Wolfner, 1999), as well as rendering 
her reluctant or unable to remate either for some time or 
permanently, stimulating an increase in the number and 
rate of development of eggs and also affecting longevity 
in females, thereby resulting in the males’ ability to sire a 
significant proportion of the females’ offspring.

Egg maturation and egg-laying are two functionally 
distinct but closely related processes. Several reports in 
insects demonstrate that male accessory gland (MAG) 
secretion alters the physiological state of virgin females 
and allows oviposition to occur. In one such study, Pick-
ford et al. (1969) for the first time revealed that an egg-
laying stimulant was produced by the accessory glands 
of the migratory grasshopper Melanoplus sanguinipes. In 
Schistocerca gregaria, implantation of accessory glands in 
the female locust invoked an increase in the number of 
eggs produced (Leahy, 1973). Similar observations have 
also been recorded for Musca domestica (Riemann & 
Thorson, 1969), Hylemya brassicae (Swailes, 1971) and 
Drosophila funebris (Baumann, 1974). However, in Lepi-
doptera studies demonstrating the effect of an accessory 
gland secretion on oviposition is limited. In Helicoverpa 

armigera, small peptides having a molecular weight of 
6.7  kDa enhanced fecundity in treated virgin females 
(Shobha et al., 2009). Similarly, Jin and Gong (2001) also 
reported oogenesis and oviposition factors (OOSF) with 
an estimated molecular mass between 55 and 66 kDa in 
the MAGs of Helicoverpa armigera.

McNeil and Tobe (2001) hypothesized a sex peptide 
that increases JH titers in females transferred from the 
male accessory glands to females after mating could 
potentially be an allatotropin. They reported a close 
similarity between the AT of Pseudaletia unipuncta and 
accessory gland myotropin, a neuropeptide of Locusta 
migratoria. The accessory gland neuropeptide of Locusta 
migratoria transferred from male to female during mat-
ing stimulates oviposition (Paemen et al., 1991). Moreo-
ver, the sex peptide in Drosophila melanogaster is known 
to increase oviposition by activation of corpora allata 
resulting in the production of juvenile hormone (Chen, 
1984; Kubli, 1992). Although the proteinaceous factors 
of MAGs influencing egg-laying behaviour have been 
widely established in several insects, very little informa-
tion is available on Spodoptera litura, a destructive pest 
of many host plants across the globe. A preliminary work 
by Sridevi et al., (1987) reported that the MAG extracts 
of Spodoptera litura have an oviposition stimulating fac-
tor which induced oviposition in virgin female moths. 
Later on, Yu et al. (2014) demonstrated that MAG secre-
tions modulate female post-mating behavior in Spodop-
tera litura, but failed to characterize these proteins.

Thus, a strategy well established in this study is that 
allatotropin if delivered to the females before mating 
may lead to accelerated egg deposition much before she 
encounters the male moths, consequently the population 
being checked as the eggs deposited by the females are 
unfertilized. The present work could lead to the develop-
ment of a protein-based biopesticide and the use of neu-
ropeptides could be an answer to overcome the issues 
related to the use of chemical pesticides, toxic proteins as 
well as the issues related to the use of naturally occurring 
viral pesticides. Hence, in the near future, insect neuro-
peptides such as the allatotropin could be a promising 
target for the generation of novel selective insecticides 
for successful pest management.

Conclusion
The nucleotide sequence of allatotropin isoform X2 
(NCBI Reference Sequence: XM_022974503.1) identified 
from Spodoptera litura genome was artificially synthe-
sized and ligated into pET32a + vector series fused with 
the 109 aa Thioredoxin tag. The plasmid pET32a+/alla-
totropin were transformed into chemically competent E. 
coli, BL21 (DE3) cells and expressed using 1 mM/L IPTG. 
The recombinant protein was analyzed by SDS-PAGE 
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Fig. 6  Possible targets for allatotropin (AT) in Spodoptera litura adults, 
associated with vitellogenesis. Solid lines represent known pathways, 
while broken lines are speculative based on information from other 
species. The known pathway works through some of the brain factors, 
such as the allatotropin, to induce JH biosynthesis in the corpora 
allata, and JH, in turn reaching the ovaries via hemolymph, where it 
regulates the process of vitellogenesis in the females. While in males, 
the JH synthesized in CA is transferred to the accessory glands. We 
hypothesize the transfer of AT by means of spermatophore to the 
bursa of females during copulation (broken line), in turn reaching the 
CA either directly or via hemolymph, thus, inducing JH biosynthesis. 
While the recombinant allatotropin injected into hemolymph 
may induce JH synthesis in the hemolymph or travel to CA and 
bring about JH synthesis. (Juvenile Hormone: JH; Allatotropin: AT; 
Recombinant allatotropin: rAT)
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and confirmed by western blotting. The expressed alla-
totropin was further purified using His-Tagged Bacte-
rial Protein Purification kit. The effect of recombinant 
allatotropin in inducing egg-laying behaviour in Spo-
doptera litura females was studied by injection method. 
The experiment performed by injecting three different 
concentrations i.e. 5, 15 and 25 pg/µl of the protein into 
the abdominal cavity of the female moths exhibited egg-
laying behaviour. Here, we propose a possible mechanism 
that bypasses the brain in which the allatotropin trans-
ferred from male to female flows into the hemolymph 
and activates JH biosynthesis thus leading to vitellogen-
esis. The present work could lead to the development of 
a protein based biopesticide resulting into a species-spe-
cific and an eco-friendly way of pest control.

Abbreviations
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