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Abstract 

Background:  Mosquitoes are key vectors for the transmission of several diseases. Anopheles gambiae is known to 
transmit pathogens of malaria and filariasis. Due to several anthropogenic factors such as climate change and popula-
tion growth leading to diverse land use, their distribution and disease spreading pattern may change. This study 
estimated the potential distribution and climatic suitability of An. gambiae under the present-day and future condi-
tions across Southwest Nigeria using Ecological Niche Modelling (ENM). The future scenarios assessed were based on 
two general circulation models (GCMs), namely community climate system model 4 (CCSM4) and geophysical fluid 
dynamics laboratory-climate model 3 (GFDL-CM3), in two representative concentration pathways (RCP 2.6 and RCP 
8.5).

Methodology:  The occurrence data were obtained from literatures that have reported the presence of An. gambiae 
mosquito species in locations within the study area. Ecological niche modelling data were processed and analysed 
using maximum entropy algorithm implemented in MaxEnt.

Result:  Fifty-five (55) unique occurrences of An. gambiae were used in the model calibration after data cleaning. 
Data analysis for the present-day habitat suitability shows that more than two-thirds (81.71%) of the study area was 
observed to be suitable for An. gambiae population. However, the two future GCMs showed contrasting results. The 
CCSM4 models indicated a slight increase in both RCPs with 2.5 and 8.5 having 81.77 and 82.34% suitability, respec-
tively. The reverse was the case for the GFDL-CM3 models as RCPs 2.5 and 8.5 had 78.86 and 76.86%.

Conclusion:  This study revealed that the study area is climatically suitable for An. gambiae and will continue to be so 
in the future irrespective of the contrasting results from the GCMs used. Since vector population is often linked with 
their disease transmission capacity, proper measures must be put in place to mitigate disease incidences associated 
with the activities of An. gambiae.
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Background
Mosquitoes are seen as a threat in different climes 
because they are vectors of several pathogens alongside 
their annoying sounds and bites. These pathogens cause a 
variety of public health diseases, including dengue fever, 
malaria, filariasis encephalitis, chikungunya fever, West 
Nile virus and Zika virus, among other diseases (Anupam 
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et  al., 2012). Due to the disease burden associated with 
these mosquito species, there is a need to monitor their 
populations effectively. The means by which this can be 
done is to use a variety of tools summing up as Ecologi-
cal Niche Modelling (ENM). The ability of a particular 
organism to thrive in a particular habitat depends on the 
interaction of space and time between it and the environ-
ment (Brown et  al., 1995). Ecological niche modelling 
(ENM) is an ecological tool that uses computer algo-
rithms to predict species distribution across geographical 
space and time using environmental variables (Harrison, 
1997; Peterson et al., 1999). It is useful in the characteri-
sation of species in an area that is determined by envi-
ronmental factors, i.e. those factors that are precisely 
responsible for the geographical distribution of the spe-
cies’ (Grinnell, 1917; Peterson, 2006). The use of ENM in 
environmental research has been greatly enhanced due 
to recent developments in geographic information sys-
tems (GIS) and increased availability of detailed geospa-
tial environmental data, including remote sensing data 
(Guisan & Zimmermann, 2000). The procedures involved 
in ENM enable ecologists to find answers to questions 
bordering on which environmental variables (e.g. tem-
perature, precipitation, digital elevation, land cover, 
land use, etc.) are responsible for the distribution of the 
observed species that can be used to contrast the niches 
of various species (Hawkins et  al., 2003; Kremen et  al., 
2008). Quantitative modelling approaches based on eco-
logical niche theory are mainly applied to understanding 
the relationship between species and the environment 
(Lestina et al., 2016). Ecological niche modelling predicts 
the distribution of a species by using the occurrence data 
of that particular species alongside selected environ-
mental variables to model the niche of a species in an 
environment that is then projected into a geographical 
space (Elith et al., 2006). Anopheles gambiae is responsi-
ble for the transmission of malaria and lymphatic filaria-
sis (CDC, 2019; WHO, 2007, 2010). Malaria is an acute 
febrile disease caused by the protozoan parasite Plasmo-
dium, which is transmitted through the bites of female 
Anopheles mosquitoes (WHO, 2007). Over 219 million 
cases of malaria were reported in 87 countries in 2017 
(WHO, 2019a). Four major human malaria parasites are 
known in Africa, namely P. falciparum, P. vivax, P. malar-
iae and P. ovale (Abose et al., 1998; WHO, 2019a). Lym-
phatic filariasis, commonly referred to as elephantiasis, 
is a neglected tropical disease that occurs when filarial 
parasites are transmitted to humans through mosqui-
toes (WHO, 2019b). In 2018, 893 million people in 49 
countries around the world are still at risk of lymphatic 
filariasis (WHO, 2019b). Wuchereria bancrofti is the 
only filarial worm that Anopheles species are capable of 
transmitting (CDC, 2019; WHO, 2010). Opinions have 

been expressed on the relationship between the popula-
tions of these vectors (mosquitoes) and climate change 
issues (WHO, 2003). Hence, there is a need to predict 
their future levels of endemism in order to develop an 
appropriate response plan in the event of a disease out-
break. Biodiversity can be significantly affected by cli-
mate change as it can alter species habitats (Buckley & 
Jetz, 2007; Sexton et al., 2009). Climate change has been 
recognised as a major driver of abundance and distri-
butional losses in many species (Araújo et  al., 2006; 
Thomas, 2004). Inadvertently, a shift in the direction of 
warmer temperatures could have a significant impact on 
disease dynamics which might lead to serious outbreaks 
(Harvell et al., 2002; Pounds et al., 2006). An increase in 
vector-borne diseases is expected due to the imminent 
migration of humans towards endemic areas (Wood-
ward et al., 2014). The complexity of transmission hosts 
of vector-borne diseases makes them extremely sensitive 
to climate change (Parham et  al., 2015). Since the vast 
majority of disease vectors are of arthropod origins (e.g. 
insects and mites), climate change is expected to cause 
changes in distribution, density, seasonality and preva-
lence of diseases (Brooks & Hoberg, 2007; Kovats et al., 
2001; Mills et al., 2010; Rosenthal, 2009). These changes 
could result in the adaptation of these vectors and hosts 
leading to new transmission cycles. The prevalence of 
vector-borne diseases is strongly linked to the population 
of such vectors (WHO, 2003). So, there is a need to map 
the potential distribution of An. gambiae. This will help 
monitor their disease transmission patterns. In addition, 
vector-borne diseases of arthropod origin are predicted 
to increase due to climate change in the future (Mills 
et al., 2010; Rosenthal, 2009). This research aims to map 
out the potential distribution and climatic suitability of 
An. gambiae under the present-day and future condi-
tions. Information on the pattern of spatial distribution 
of vectors is crucial for assessing the risk of disease trans-
mission in a different region. Predicting the occurrence 
of a vector in specific regions is therefore a challenge for 
many disease control programmes to more effectively 
plan and implement control interventions and adaptation 
measures (Carvalho et al., 2017).

Materials and methods
Study area
The study was investigated in Southwest Nigeria one of 
the six geopolitical zones of the country (Fig. 1). States in 
this region include Ekiti, Lagos, Ogun, Ondo, Osun and 
Oyo. It is geographically located between longitude 2° 31′ 
and 6° 00′ East and Latitude 6° 2′ and 8° 37′ N (Agboola, 
1979) with a total land area of approximately 79,665km2. 
It shares boundaries with Edo and Delta states, Kwara 
and Kogi states, the Republic of Benin and the Gulf of 
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Guinea to the east, north, west and south, respectively 
(Faleyimu et  al., 2013). Southwest Nigeria is character-
ised by a tropical climate of two seasons, namely wet and 
dry seasons with temperatures ranging from 21 to 34 °C 
and annual rainfall ranging from 150 to 3000 mm (Faley-
imu et al., 2013). The vegetation cover of this region con-
sists of freshwater swamps and mangrove forests on the 
belt, with the lowland part of the forest stretching inland 
to Ogun and some part of Ondo state, while the second-
ary forest is towards the northern boundary of the south-
ern Savannah (Agboola, 1979).

Species record data collection
Data for the species record were obtained from scientific 
literature published between 1990 and 2019. Literature 
searches were conducted using online databases such as 
Google, Google Scholar, Researchgate, Plosone, PubMed, 
Scopus, Walter Reed Biosystematics Unit Culicidae Sys-
tematic Literature Database search engine (VectorMap 
projects). The search terms used include Southwest Nige-
ria, mosquito, Anopheles gambiae, Ondo, Lagos, Ekiti, 
Ogun, Oyo, Osun and their combinations. All articles 
containing information on the records of An. gambiae 

were examined for species records. A further search was 
carried out on references cited in the identified articles 
which were presumed to have additional information 
on species records. Articles without records of collec-
tion were discarded. Collated occurrence data were then 
cross-checked with Anopheles vector database in Nige-
ria compiled by Okorie et al. (2011) and the Global Bio-
diversity Information Facility (GBIF) online repository 
to ensure that no data were missed. Duplicate records 
reported by different authors were reduced to one. The 
data collected from the articles included state, locality, 
latitude and longitude.

Data georeferencing and cleaning
Species records with coordinates were checked for cor-
rectness to ensure that they are properly linked to their 
respective collection sites. This was done using Google 
Maps (https://​www.​maps.​google.​com). Also, species 
records without coordinates but with community-level 
collection sites were assigned coordinates by obtaining 
them from Google Maps. This was done by searching 
for the name or description of the collection sites from 
the record source. Collection sites at the state and local 

Fig. 1  Map of Southwest Nigeria

https://www.maps.google.com
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government levels were excluded from data to avoid the 
use of low-precision species record. Species records ear-
lier than 1990 were also discarded. All species record 
coordinates were then converted to a decimal degree for-
mat. The data coordinates observed to appear more than 
once were reduced to one. The data for the occurrence 
record were compiled using Microsoft Excel spreadsheet 
package, and it is provided in the attached Additional 
file 1.

Environmental variables used
Bioclimatic layers consisting of 19 variables (see Table 1) 
for the present-day and future conditions were obtained 
from WorldClim database version 1.4. This provides 
information about climate layers from weather station 
data between 1950 and 2000 (Hijmans et  al., 2005) for 
present-day niche model and downscaled cumulative 
impact monitoring program 5 (CIMP5) database con-
sisting of future conditions (average for 2041–2060). The 
future conditions used for this study were based on two 
General Circulation Models (GCMs), namely Commu-
nity Climate System Model 4 (CCSM4) and Geophysi-
cal Fluid Dynamics Laboratory Model 3 (GFDL-CM3) in 
two representative concentration pathways (RCP 2.6 and 
RCP 8.5), where RCP 2.6 represents a low greenhouse gas 
(GHG) concentration scenario and RCP 8.5 represents a 
high level of GHGs in the future (Stocker et al., 2013).

Model analysis and mapping
The bioclimatic layers used for this study were modified 
with ArcMap (version 10.5) by clipping them to the same 
extent using the shapefile of the study area as a template. 
The correlation function in the desktop version of ENM-
tools (version 1.4.4) was used to check for correlation 
between clipped bioclimatic variables used in this study 
(Warren et al., 2010). When two or more interacting vari-
ables were observed to have strong correlations (r ≥ 0.80), 
only one of them is used removing the others or both 
retained if they are vital to the mosquito species survival 
(Rödder et  al., 2009; Synes & Osborne, 2011; Aguilar & 
Lado, 2012; Alkishe et  al., 2020). The resulting biocli-
matic variables were used for the niche model.

A subset of species that are at least 10 km apart from 
the nearest record were randomly selected to reduce 
spatial auto-correlation using the spThin package on 
the R platform (Aiello‐Lammens et  al., 2015). Back-
ground points for pseudo-absence records were gen-
erated by stacking environmental variables together 
to generate potential background points. This was 
done on the R platform using raster and dismo pack-
ages (Hijmans et al., 2016, 2017; R Core Team, 2017). A 
fraction of the potential background point, which was 
10 × higher than the species occurrence record, was 
used for model calibration. The ENMEval package (ver-
sion 0.3.0) on the R platform was used to determine the 
best settings for optimal model niche modelling in the 
MaxEnt software (Muscarella et al., 2014). The random 
cross-validation method and 10 cross-validation folds 
were used to run the evaluation. Corrected Akaike 
Information Criterion (AICc) was used to evaluate the 
complexity of the model (Warren & Seifert, 2011). Out 
of the generated result, the model setting with the low-
est Delta AICc value (between 0 and 2) was chosen and 
implemented in MaxEnt (version 3.4.0) to produce the 
model output (Phillips & Dudík, 2008). The future con-
dition models were generated for each RCPs under the 
two GCMs used to examine their individual potential 
distribution. Model performance was evaluated using 
partial receiver operating characteristics (pROC) statis-
tics applied to the 50% subset of occurrences left out 
prior to model calibration for testing. This approach 
has been used as a means of eliminating possible errors 
associated with traditional ROCs provided in MaxEnt 
outputs Peterson et  al., 2008; Lobo et  al., 2008). Par-
tialROC was calculated using the PartialROC func-
tion available on the Ntbox platform (Osorio-Olvera 
et  al., 2018). The mean of iterations was used to esti-
mate the ecological niche model output. This output 
was then used to produce the suitability map. The Max-
Ent output was classified in ArcMap into areas of very 
low (0–0.1), low (> 0.1–0.2), moderate (> 0.2–0.4), high 

Table 1  Environmental variables used for the study

Variable Interpretation

Bio 1 Annual Mean Temperature

Bio 2 Mean Diurnal Range (Mean of monthly (max 
temp—min temp))

Bio 3 Isothermality (BIO2/BIO7) (* 100)

Bio 4 Temperature Seasonality (standard deviation *100)

Bio 5 Max Temperature of Warmest Month

Bio 6 Min Temperature of Coldest Month

Bio 7 Temperature Annual Range (BIO5-BIO6)

Bio 8 Mean Temperature of Wettest Quarter

Bio 9 Mean Temperature of Driest Quarter

Bio 10 Mean Temperature of Warmest Quarter

Bio 11 Mean Temperature of Coldest Quarter

Bio 12 Annual Precipitation

Bio 13 Precipitation of Wettest Month

Bio 14 Precipitation of Driest Month

Bio 15 Precipitation Seasonality (Coefficient of Variation)

Bio 16 Precipitation of Wettest Quarter

Bio 17 Precipitation of Driest Quarter

Bio 18 Precipitation of Warmest Quarter

Bio 19 Precipitation of Coldest Quarter
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(> 0.4–0.6), and very high (> 0.6) using natural breaks 
in the symbology tools to produce the habitat suitabil-
ity model picture (Sallam et  al., 2016). The percentage 
area occupied by each class was calculated using the 
cell numbers from their attribute tables. Uncertainty 
maps were produced by calculating the standard devia-
tion of pixel values from model outputs generated (de 
Oliveira et al., 2018). The uncertainty levels were clas-
sified as low (0.00–0.03), moderate (> 0.03–0.05) and 
high (> 0.05) using the standard deviation values. All 
data from this study was projected on a spatial resolu-
tion of 2.5 min (≈ 5 km).

Results
Point presence of An. gambiae in Southwestern Nigeria
The database compiled for this study were about 99 pres-
ence records for An. gambiae associated with geograph-
ical coordinates after data cleaning (Additional file  1). 
After distance filtering, 55 unique occurrence data were 
used for model calibration (Fig. 2). There are some loca-
tions in the study area that need sampling and are rep-
resented by red line shapes.

Environmental variables used for the niche model 
calibration of An. gambiae in Southwestern Nigeria
The correlation analysis conducted reduced the biocli-
matic variables to 8 that were eventually used for model 
calibration. These variables are Bio1 (Annual mean tem-
perature), Bio2 (Mean diurnal range), Bio3 (Isothermal-
ity), Bio5 (Maximum Temperature of Warmest Month), 
Bio6 (Minimum temperature of coldest month), Bio7 
(Temperature annual range), Bio12 (Annual precipita-
tion), Bio13 (Precipitation of wettest month), Bio14 
(Precipitation of driest month), Bio15 (Precipitation 
seasonality).

Climatic suitability model for An. gambiae
The potential distribution under present-day conditions 
for An. gambiae in Fig.  3a showed that a large portion 
of Southwest Nigeria can support the population of this 
species. This model revealed that 81.71% (65,090.53 km2) 
of the study area was climatically suitable for An. gam-
biae (Table  2). The model prediction performed better 
than random outcomes based on the pROC test in which 
the mean AUC ratio was 1.45 (p < 0.001).

Fig. 2  Occurrence record (green dots) of An. gambiae used for model calibration and areas needing further sampling (red line shapes)
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Projecting the An. gambiae model to future condi-
tions showed similarity in the overall pattern of distribu-
tional to that under present-day conditions (Fig.  3b–e). 

However, the two GCMs used in this study presented 
conflicting levels of suitability for the species compared 
to present-day conditions (Table 2). The CCSM4 models 

Fig. 3  Model picture of climatic suitability of present-day and future conditions for An. Gambiae 
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indicated a slight increase in both RCPs with 2.5 and 8.5 
having 81.77 and 82.34% suitability, respectively. It was a 
reverse scenario for the GFDL-CM3 models as RCPs 2.5 
and 8.5 had 78.86 and 76.86% suitability correspondingly 
which suggested a decrease from the present-day value.

Lagos and Ogun state had more areas with very high 
suitability for An. gambiae compared to other states 
across all the models (Fig. 3).

The level of uncertainty for each model is shown in 
Fig.  4. This indicated that larger areas had low levels of 
uncertainty across different models generated in this 
study.

Discussion
This study collated the occurrence data set for An. gam-
biae species in southwest Nigeria and provided detailed 
maps of their potential geographic distribution under 
present-day and future climatic conditions.  The essence 
of modelling their future distribution was to provide an 
insight into the potential distribution variability that 
could exist in comparison with present-day conditions. 
The model pictures described the current distribution 
of An. gambiae and also anticipated possible changes in 
the range of the species under future conditions. This will 
help concerned stakeholders identify risk areas where 
the diseases they transmit may be established with the 
availability of infection sources through human dynam-
ics. The pROC test carried out on the models generated 
from this study showed that they performed better than 
random. Uncertainty mapping was done due to the spa-
tial variability associated with different GCMs and ENMs 
methods (Diniz-Filho et  al., 2009; Buisson et  al., 2010; 
Carvalho et al., 2017). The uncertainty mapping provided 
more confidence in the areas predicted as environmen-
tally suitable by the models.

However, the distribution of this Anopheles mos-
quito species is as a result of the relationship that exists 
between factors such as climatic factors, landforms, soil 
types and the human settlement patterns of different 

ecological zones (Moffett et  al., 2007; Tolulope, 2014; 
Siteti et  al., 2016). However, this present study focused 
only on how climatic factors could affect their distribu-
tion pattern. Across Southwest Nigeria, the potential 
distribution of An. gambiae generated from the present-
day scenario seems to be far-reaching. This is because 
its overall distribution and climatic suitability cover 
more than two-thirds of the study area. This finding was 
similar to that reported by Akpan et al. (2018). It is very 
imperative to know that areas with high suitability and 
low distribution density of An. gambiae may have a seri-
ous likelihood of experiencing widespread prevalence 
alongside high distribution density, species migration 
and invasion (Peterson, 2009). Previous reports by Lind-
say et al. (1998), Onyabe and Conn (2001), Moffett et al. 
(2007) and Kulkarni et al. (2010) suggest that the range, 
relative abundance and ecological adaptability of An. 
gambiae are significantly influenced by climate seasonal-
ity, random temporal fluctuations, annual precipitation. 
Accordingly, their reports corroborate with the find-
ings of this study because all the factors they mentioned 
played one role or the other in determining the distribu-
tion of the species in the study area.

The two GCMs used in this study presented conflict-
ing levels of suitability for the species compared to the 
present-day conditions. The CCSM4 models showed a 
slight increase in suitability while the GFDL-CM3 mod-
els suggested a decrease from the present-day value. 
However, they both indicated continued climate suita-
bility under future conditions. The latter model (GFDL-
CM3) is in agreement with the submissions of Drake 
and Bier (2014) and Tonnang et al. (2014). Their studies 
predict contractions in the distribution area of Anoph-
eles species in West African countries. However, the 
overall contraction of the vector’s full range could mis-
takenly suggest less exposure to vector-borne diseases 
with climate change (Carvalho et  al., 2017). Likewise, 
the association with human distribution demonstrates 
the need for necessary precautions when interpreting 

Table 2  Percentage climatic suitability of present-day and future conditions for An. gambiae 

Suitability Percentage area occupied [%] (Area occupied in Km2)

Present-day CCSM4 RCP26 CCSM4 RCP85 GFDL-CM3 RCP26 GFDL-CM3 RCP85

Very low 6.73 (5363.76) 4.37 (3481.90) 5.88 (4682.30) 7.56 (6023.24) 9.93 (7913.74)

Low 11.56 (9210.72) 13.86 (11,040.71) 11.78 (9386.58) 13.58 (10,815.45) 13.66 (10,881.39)

Moderate 32.17 (25,631.73) 38.34 (30,543.76) 32.70 (26,049.40) 32.67 (26,027.42) 29.58 (23,565.36)

High 42.41 (33,787.28) 33.64 (26,797.41) 40.51 (32,270.78) 37.91 (30,204.11) 40.84 (32,534.27)

Very high 7.12 (5671.51) 9.79 (7801.22) 9.13 (7276.25) 8.28 (6594.78) 5.99 (4770.23)

Unsuitable (Very low to Low) 18.29 (14,574.47) 18.29 (14,574.47) 17.66 (14,068.87) 21.14 (16,838.68) 23.59 (18,795.14)

Suitable (Moderate to Very high) 81.71 (65,090.53) 81.77 (65,142.39) 82.34 (65,596.13) 78.86 (62,826.32) 76.41 (60,869.86)
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vector ENM predictions. The occurrence of vectors by 
itself does not necessarily imply a higher risk of disease 
transmission and a closer look at other risk factors is 
required. In addition to previously mentioned factors, 

land cover, land use and human population also con-
tribute to the distribution of Anopheles species and 
incidence of malaria (Wiebe et  al., 2017; Zohdy et  al., 
2016). The lack of futuristic land cover, land use and 

Fig. 4  Model uncertainty of present-day and future climatic suitability for An. gambiae 
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human population data in a way limits the scope of the 
models generated by this study. Also, the lack of sam-
pling for An. gambiae in some areas may affect the pre-
cision of these model.

Conclusion
The assessment of the models generated by this study 
showed that vast area Southwest Nigeria will continue 
to be climatically suitable for the population of An. 
gambiae species under projected future conditions. 
Therefore, the outcome of this model can be used to 
forecast probable cases of diseases that may be vectored 
by the species modelled in this study. This will go a long 
way towards informing the appropriate authorities to 
design effective response plan and control measures 
to combat the prevalence of the diseases transmitted 
by An. gambiae in the future. For more robust ENMs, 
further studies geared towards simulated datasets 
for future land cover, land use and human population 
should be carried out. Also, more areas of the region 
need to be sampled for better prediction.
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