The total infestation of 37.71% of the trees in the study area represents an unexpected impact on the trees found in Rivers State University. This is considering the fact that the area is enclosed, with modern buildings and ongoing construction work that is rapidly destroying the trees and homes of the termites. With the number of infested trees and most bearing mud tubes, the whole appearance of the university trees appears to show termite infestation or presence in one out of three trees. Some E. guineensis were seen to be totally damaged with large termite nests on the tree. However, the short time in which this research was done precludes the possibility of discovering how much of the damage in the tree was actually due to the termites and how much would have been the termites simply taking advantage of prior damage (e.g. natural branch breaking due to winds and student’s breakage of tree branches by sitting on them). It was also assumed until recently that termite will only inflict damage on unhealthy tree (Harris, 1998), but this is no longer accepted as a lot of presumed healthy fruiting trees were found with nest and mud tubes.
There are many factors that affect a tree’s vulnerability to termites, any number of which may be at work for a given species. In this study, it was observed that P. guajava and C. nucifera were not infested by termites whereas grape fruit (Citrus paradisi) which is potentially toxic to dogs (https://www.gardenfactoryny/toxicplants.pdf) was among the trees infested. The C. paradisi were fruiting and so assumed to be mature as immature trees tend to be more susceptible to termite damage (Cowie, Logan, & Wood, 1999) and mature trees can be difficult for termites to attack (Cooke & Royner, 1984). The distribution of termites in the study area did not have a significant association with the tree type and the sampled stations of the study area indicating random infestation. However, the presentation of the termites was dependent on the termite present. This means that it is possible to know the termites by their presentations on a particular tree: either as nests or mud tubes. Arboreal nests observed in Persea americana, E. guineensis, C. albidum, G. arborea, P. macrophylla, D. edulis and Eucalyptus sp. in this study agree with the work by Echezona, Igwe, and Attama (2012) to an extent. They observed nests in P. macrophylla and M. indica, but nests were not found on M. indica in this study. The presentation of termites on trees may therefore depend on the termite infesting at a particular time. The ability of the termites to affect more than one tree type shows lack of specificity presenting a generalist and polyphagous behaviour. Only Glyptotermes sp. appeared specific infesting only Chrysophyllum albidum.
The termite species recorded in this study belonged to two families—Termitidae and Kalotermidae, and five genera—Amitermes, Microcerotermes, Globitermes, Nasutitermes havilandi and Glyptotermes while Ogedegbe and Eloka (2015) recorded five species as important pests of plants in Edo State, Nigeria (N. havilandi, Odontotermes sp., Nasutitermes arboreum, A. evencifer and Microtermes sp.). Coptotermes which has been found as the insect pest of palm plantain in Malaysia (Bong, King, Ong, & Mahadi, 2012) was not among the species obtained in this study.
The basic knowledge of termite species and their distribution in any given area is vital for effective control measures as it also helps determine if there is need for control (Logan, Cowie, & Wood, 1990). The infestation in the study area requires control as it leads to damage of the trees. Wood ash heaped at the base of tree crops to prevent infestation has been found to be effective (Ogedegbe & Eloka, 2015), whereas in some studies it has not been effective (Logan, Cowie, & Wood, 1990). This difference may depend on the wood used for the ash. There could be some benefit if the wood ash comes from plants that are resistant to termite infestation; however, this requires further studies to verify their use and benefit.