Adeogun, A. O., Popoola, K. O. K., Oduola, A. O., Olakiigbe, A. K., & Awolola, T. S. (2017). High level of DDT resistance and reduced susceptibility to Deltamethrin in Anopheles gambiae, Anopheles coluzzi, and Anopheles arabiensis from Urban communities in Oyo State, South-West Nigeria. Journal of Mosquito Research, 7, 125–133.
Google Scholar
Ali, K., Ahmed, B., Dwivedi, S., Saquib, Q., AlKhedhairy, A. A., & Musarrat, J. (2015). Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS One, 10, e0131178.
PubMed
PubMed Central
Google Scholar
Awolola TS, Adeogun A, Olakiigbe AK, Oyeniyi T, Olukosi YA, Okoh H, et al. (2018). Pyrethroids resistance intensity and resistance mechanisms in Anopheles gambiae from malaria vector surveillance sites in Nigeria. PLoS One, 13 (12): e0205230. https://doi.org/10.1371/journal.pone.0205230.
Awolola, T. S., Oduola, O. A., Obansa, J. B., Chukwurah, N. J., & Unyimadu, J. P. (2007). Anopheles gambiae s.s. breeding in polluted water bodies in urban Lagos, Southwestern Nigeria. Journal of Vector Borne Diseases, 44, 241–244.
CAS
PubMed
Google Scholar
Badri, N. K., & Natarajan, S. (2010). Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science, 156, 1–13.
Google Scholar
Dhanasekaran, D., & Thangaraj, R. (2013). Evaluation of larvicidal activity of biogenic nanoparticles against filariasis causing Culex mosquito vector. Asian Pacific Journal of Tropical Disease, 3, 174–179.
CAS
PubMed Central
Google Scholar
Dinesh, D., Murugan, K., Madhiyazhagan, P., Panneerselvam, C., Nicoletti, M., Jiang, W., … Suresh, U. (2015). Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: Towards an effective tool against the malaria vector Anopheles stephensi. Parasitology Research, 114, 1519–1529.
Edriss, A. E., Satti, A. A., & Alabjar, Z. A. (2012). Preliminary studies on phytochemicals and larvicidal effects of Acacia nilotica L. extracts against Anopheles arabiensis Patton. Scientific Research and Essays, 7, 4253–4258.
Google Scholar
Elemike, E. E., Oseghale, C. O., Chuku, A., Labulo, A. H., Owoseni, M. C., Mfon, R., … Adesuji, E. T. (2014). Evaluation of antibacterial activities of silver nanoparticles green-synthesized using pineapple leaf (Ananas comosus). Micron, 57, 1–5.
Fagbohun, I. K., Oyeniyi, T. A., Idowu, T. E., Otubanjo, O. A., & Awolola, S. T. (2019). Cytochrome P450 mono-oxygenase and resistance phenotype in DDT and deltamethrin-resistant Anopheles gambiae ( Diptera: Culicidae ) and Culex quinquefasciatus in Kosofe, Lagos, Nigeria. Journal of Medical Entomology, 56, 817–821. https://doi.org/10.1093/jme/tjz006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ghosh, A., Chowdhury, N., & Chandra, G. (2012). Plant extracts as potential mosquito larvicides. The Indian Journal of Medical Research, 135, 581–598.
CAS
PubMed
PubMed Central
Google Scholar
Gillies, M. T., & Coetzee, M. (1987). A supplement to the Anophelinae of Africa south of the Sahara (Afro- An annotated checklist and bibliography of the mostropical Region). Johannesburg: South African Institute for Medical Research.
Google Scholar
Interior Health, 2009. Pest management plan for control of mosquito larvae that are potential West Nile virus vectors.
Google Scholar
Kamaraj, C., Bagavan, A., Elango, G., Zahir, A. A., Rajkumar, G., Mariamuthu, S., … Rahuman, A. A. (2011). Larvicidal activity of medicinal plant extracts against Anopheles stephensi and Culex tritaeniorhynchus. The Indian Journal of Medical Research, 134, 101–106.
Killeen, G., Fillinger, U., & Knols, B. G. J. (2002). Advantages of larval control for African malaria vectors: Low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage. Malaria Journal, 1, 1–8.
Google Scholar
Kumar, K. R., Nattuthurai, N., Gopinath, P., & Mariappan, T. (2014). Synthesis of eco-friendly silver nanoparticles from Morinda tinctoria leaf extract and its larvicidal activity against Culex quinquefasciatus. Parasitology Research, 114, 411–417.
PubMed
Google Scholar
Liu, N. (2015). Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annual Review of Entomology, 60, 537–559. https://doi.org/10.1146/annurev-ento-010814-020828.
Article
CAS
PubMed
Google Scholar
Maria, C. S., Lourenço, V. N., de Souza, A. C., Pinheiro, M. L., Ferreira, R. S., et al. (2007). Evaluation of anti-tubercular activity of nicotinic and isoniazid analogues. In A Peraltab Gen. Pap., (vol. 15, pp. 181–191).
Google Scholar
Mazzarri, M. B., & Georghiou, G. P. (1995). Characterization of resistance to organophosphate, carbamate, and pyrethroid insecticides in field populations of Aedes aegypti from Venezuela. Journal of the American Mosquito Control Association-Mosquito News, 11, 315–322.
CAS
Google Scholar
Mohapatra, B., Kaintura, R., Singh, J., Kuriakose, S., & Mohapatra, S. (2015). Biosynthesis of high concentration, stable aqueous dispersions of silver nanoparticles using Citrus limon extract. Advanced Materials Letters, 6, 228–234.
CAS
Google Scholar
Mondal, N. K., Chowdhury, A., Dey, U., Al, E., Mukhopadhya, P., Chatterjee, S., … Datta, J. K. (2014). Green synthesis of silver nanoparticles and its application for mosquito control. Asian Pacific Journal of Tropical Disease, 4, 204–210.
Nilanjuna, G., Samrat, P., & Piyali, B. (2014). Silver nanoparticles from Moringa Olifera green synthesis characterization and its antimicrobial efficacy. Journal of Drug Delivery and Therapeutics, 11, 20–25.
Google Scholar
Nunes, F. C., Leite, J. A., Oliveira, L. H. G., Sousa, P. A. P. S., Menezes, M. C., Moraes, J. P. S., … Braga, V. A. (2015). The larvicidal activity of Agave sisalana against L4 larvae of Aedes aegypti is mediated by internal necrosis and inhibition of nitric oxide production. Parasitology Research, 114, 543–549. https://doi.org/10.1007/s00436-014-4216-y.
Oduola, A. O., Idowu, E. T., Oyebola, M. K., Adeogun, A. A., Olojede, J. B., Otubanjo, O. A., & Awolola, T. S. (2012). Evidence of carbamate resistance in urban populations of Anopheles gambiae s.s. Mosquitoes resistant to DDT and deltamethrin insecticides in Lagos. Parasites & Vectors, 5, 1–9. https://doi.org/10.1186/1756-3305-5-116.
Article
Google Scholar
Oduola, A. O., Olojede, J. B., Ashiegbu, C. O., Olufemi, A., Otubanjo, O. A., & Awolola, T. S. (2010). High level of DDT resistance in the malaria mosquito: Anopheles gambiae S. L. from rural, semi urban and urban communities in Nigeria. Journal of Rural and Tropical Public Health, 9, 114–120.
Google Scholar
Oluwaniyi, O. O., Adegoke, H. I., Adesuji, E. T., Alabi, A. B., Bosede, S. O., Labulo, A. H., & Oseghale, C. O. (2016). Biosynthesis of silver nanoparticles using aqueous leaf extract of Thevetia peruviana Juss and its antimicrobial activities. Applied Nanoscience, 6, 903. https://doi.org/10.1007/s13204-015-0505-8.
Article
CAS
Google Scholar
Pace-Asiak, C. R., Hahn, S., Diamandis, E. P., Soleas, G., & Goldberg, D. M. (1995). The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease. Clinica Chimica Acta, 235, 207–219.
Google Scholar
Prabhu, K., Murugan, K., Nareshkumar, A., Ramasubramanian, N., & Bragadeeswaran, S. (2011). Larvicidal and repellent potential of Moringa oleifera against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). Asian Pacific Journal of Tropical Biomedicine, 1, 124–129.
CAS
PubMed
PubMed Central
Google Scholar
Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27, 76–83.
CAS
PubMed
Google Scholar
Rajasekharreddy, P., & Rani, P. U. (2014). Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential againstmosquito vectors and HeLa cancer cells. Materials Science and Engineering: C, 39, 203–212.
CAS
Google Scholar
Rathy, M. C., Sajith, U., & Harilal, C. C. (2015). Larvicidal efficacy of medicinal plant extracts against the vector mosquito Aedes albopictus. International Journal of Mosquito Research, 2, 80–82.
Google Scholar
Rawani, A., Ghosh, A., & Chandra, G. (2013). Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Tropica, 128, 613–622.
CAS
PubMed
Google Scholar
Samidurai, K., Jebanesan, A., Saravanakumar, A., Govindarajan, M., & Pushpanathan, T. (2009). Larvicidal, ovicidal and repellent activities of Pemphis acidult Frost (Lythraceae) against filarial and dengue vector mosquitoes. Academic Journal of Entomology, 2, 62–66.
CAS
Google Scholar
Sijutha, V., Murugan, K., Paulpandi, M., Panneerselvam, C., Suresh, U., Roni, M., … B.G (2015). Green synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitology Research, 10, 56–62. https://doi.org/10.1007/s00436-015-4556-2.
Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13, 2981–2988.
CAS
Google Scholar
Soni, N., & Prakash, S. (2014). Silver nanoparticles: a possibility for malarial and filarial vector control technology. Parasitology Research, 113, 4015–4022.
PubMed
Google Scholar
Suresh, G., Gunasekar, P. H., Kokila, D., Prabhu, D., Dinesh, D., Ravichandran, N., … Silva, G. V. (2014). Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial andmosquito larvicidal activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 127, 61–66.
Thirumurgan, A., Tomy, N. A., Jai Ganesh, R., & Gobikrishnan, S. (2010). Biological reduction of silver nanoparticles using plant leaf extracts and its effect an increased antimicrobial activity against clinically isolated organism. Der Pharma Chemica, 2, 279–284.
Google Scholar
Umoren, S. A., Obot, I. B., & Gasem, Z. M. (2014). Green sysnthesis of silver nanoparticles using apple (Malus domestica) fruit extract at room temperature. Journal of Materials and Environmental Science, 5, 907–914.
Google Scholar
Vatandoost, H., & Vaziri, V. M. (2004). Larvicidal activity of a neem tree extract (Neemarin) against mosquito larvae in the Islamic Republic of Iran. EMHJ-Eastern Mediterranean Health Journal, 10(4-5), 573–581.
CAS
Google Scholar
Veerakumar, K., Govindarajan, M., Rajeswary, M., & Muthukumaran, U. (2014). Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitology Research, 113, 1775–1785.
PubMed
Google Scholar
Velayutham, K., Rahuman, A. A., Rajakumar, G., et al. (2013). Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pacific Journal of Tropical Medicine, 6, 95–101.
CAS
PubMed
Google Scholar
WHO (2017a). Global vector control response 2017–2030. Geneva, World Health Organization.
WHO (2017b). Malaria vector control policy recommendations and their applicability to product evaluation. Geneva, World Health Organization.