Abele, A., & Puntarulo, S. (2004). Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comparative Biochemistry and Physiology, Part A, 138, 405–415. https://doi.org/10.1016/j.cbpb.2004.05.013.
Article
CAS
Google Scholar
Akhtar, M. S., Pal, A. K., Sahu, N. P., Ciji, A., & Mahanta, P. C. (2013). Thermal tolerance, oxygen consumption and haemato-biochemical variables of Tor putitora juveniles acclimated to five temperatures. Fish Physiology and Biochemistry, 39, 1387–1398. https://doi.org/10.1007/s10695-013-9793-7.
Article
CAS
PubMed
Google Scholar
Allan, B. J. M., Paolo, D., Munday, P. L., & McCormick, M. I. (2015). Feeling the heat: the effect of acute temperature changes on predator–prey interactions in coral reef fish. Conservation Physiology, 3, 1–8. https://doi.org/10.1093/conphys/cov011.
Article
Google Scholar
APHA, AWWA, WPCF (2005). Standard methods for the examination of water and waste water 21st, (401st ed., ). Washington, DC: American Public Health Association.
Google Scholar
Bagnyukova, T. V., Lushchak, O. V., Storey, K. B., & Lushchak, V. I. (2007). Oxidative stress and antioxidant defense responses by goldfish tissues to acute change of temperature from 3 to 23 °C. Journal of Thermal Biology, 32, 227–234. https://doi.org/10.1016/j.jtherbio.2007.01.004.
Article
CAS
Google Scholar
Campos, D. F., Val, A. L., & Almeida-Val, V. M. F. (2018). The influence of lifestyle and swimming behavior on metabolic rate and thermal tolerance of twelve Amazon forest stream fish species. Journal of Thermal Biology, 72, 148–154. https://doi.org/10.1016/j.jtherbio.2018.02.002.
Article
CAS
PubMed
Google Scholar
Das, T., Pal, A. K., Chakraborty, S. K., Manush, S. M., Sahu, N. P., & Mukherjee, S. C. (2005). Thermal tolerance, growth and oxygen consumption of Labeo rohita fry (Hamilton, 1822) acclimated to four temperatures. Journal of Thermal Biology, 30, 378–383. https://doi.org/10.1016/j.jtherbio.2005.03.001.
Article
Google Scholar
Di Giulio, R. T., Washburn, P. C., Wenning, R. J., Winston, G. W., & Jewell, C. S. (1989). Biochemical responses in aquatic animals: a review of determinants of oxidative stress. Environmental Toxicology und Chemistry, 8, 1103–1123. https://doi.org/10.1002/etc.5620081203.
Article
Google Scholar
Dong, Y., Dong, S., & Ji, T. (2008). Effect of different thermal regimes on growth and physiological performance of the sea cucumber Apostichopus japonicus Selenka. Aquaculture, 275, 329–334. https://doi.org/10.1016/j.aquaculture.2007.12.006.
Article
Google Scholar
Freitas, R., DeMarchi, L., Bastos, M., Moreira, A., Velez, C., Chiesa, S., … Soares, M. V. M. A. (2017). Effects of seawater acidification and salinity alterations on metabolic, osmoregulation and oxidative stress markers in Mytilus galloprovincialis. Ecological Indicators, 79, 54–62. https://doi.org/10.1016/j.ecolind.2017.04.003.
Garcia, L., De, O., Okamoto, H. M., Riffel, A. P. K., Saccol, M. E., Pavanato, M. A., & Sampaio, L. A. N. (2015). Oxidative stress parameters in juvenile Brazilian flounder Paralichthys orbignyanus (Valenciennes, 1839) (Pleuronectiformes: Paralichthyidae) exposed to cold and heat shocks. Neotropical Ichthyology, 13(3), 607–612. https://doi.org/10.1590/1982-0224-20140148.
Article
Google Scholar
Gutteridge, J. M. (1995). Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinical Chemistry, 41(12 Pt 2), 1819–1828.
Article
CAS
Google Scholar
Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry, 249(22), 7130–7139.
CAS
PubMed
Google Scholar
Helly Jr., J. J. (1976). The effect of temperature and thermal distribution on glycolysis in two rockfish species (Sebastes). Marine Biology, 37(1), 89–95.
Article
CAS
Google Scholar
Hsu, C. Y., & Chiu, C. Y. (2009). Ambient temperature influences aging in an annual fish (Nothobranchius rachovii). Aging Cell, 8, 726–737. https://doi.org/10.1111/j.1474-9726.2009.00525.x.
Article
CAS
PubMed
Google Scholar
Jiang, D., Wu, Y., Huang, D., Ren, X., & Wang, Y. (2017). Effect of blood glucose level on acute stress response of grass carp Ctenopharyngodon idella. Fish Physiology and Biochemistry, 43(5), 1433–1442. https://doi.org/10.1007/s10695-017-0383-y.
Article
CAS
PubMed
Google Scholar
Joy, S., Alikunju, P. A., Jose, J., Sudha, H. S. H., Parambath, M. P., Puthiyedathu, T. S., & Philip, B. (2017). Oxidative stress and antioxidant defense responses of Etroplus suratensis to acute temperature fluctuations. Journal of Thermal Biology, 70, 20–26. https://doi.org/10.1016/j.jtherbio.2017.10.010.
Article
CAS
PubMed
Google Scholar
Kaur, M., Atif, F., Ali, M., Rehman, H., & Raisuddin, S. (2005). Heat stress-induced alterations of antioxidants in the freshwater fish Channa punctata Bloch. Journal of Fish Biology, 67, 1653–1665. https://doi.org/10.1111/j.1095-8649.2005.00872.x.
Article
CAS
Google Scholar
Koopman, K. R., Collas, F. P. L., van der Velde, G., & Verberk, W. C. E. P. (2016). Oxygen can limit heat tolerance in freshwater gastropods: differences between gill and lung breathers. Hydrobiologia, 763(1), 301–312. https://doi.org/10.1007/s10750-015-2386-y.
Article
Google Scholar
Kumar, N., Krishnani, K. K., & Singh, P. N. (2018). Effect of dietary zinc-nanoparticles on growth performance, anti-oxidative and immunological status of fish reared under multiple stressors. Biological Trace Element Research, 186(1), 267–278. https://doi.org/10.1007/s12011-018-1285-2.
Article
CAS
PubMed
Google Scholar
Leggatt, R. A., Brauner, C. J., Schulte, P. M., & Iwama, G. K. (2007). Effects of acclimation and incubation temperature on the glutathione antioxidant system in killifish and RTH-149 cells. Comparative Biochemistry & Physiology, 146A, 317–326. https://doi.org/10.1016/j.cbpa.2006.10.033.
Article
CAS
Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275.
CAS
PubMed
Google Scholar
Lushchak, V. I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology, 101(1), 13–30. https://doi.org/10.1016/j.aquatox.2010.10.006.
Article
CAS
PubMed
Google Scholar
Lushchak, V. I. (2016). Contaminant-induced oxidative stress in fish: a mechanistic approach. Fish Physiology and Biochemistry, 42, 711–747. https://doi.org/10.1007/s10695-015-0171-5.
Article
CAS
PubMed
Google Scholar
Lushchak, V. I., & Bagnyukova, T. V. (2006). Temperature increase results in oxidative stress in goldfish tissues. 2. Antioxidant and associated enzymes. Comparative Biochemistry and Physiology Part C, 143(1), 36–41. https://doi.org/10.1016/j.cbpc.2005.11.018.
Article
CAS
PubMed
Google Scholar
Mabuchi, K., Seno, H., Suzuki, T., & Nishida, M. (2005). Discovery of an ancient lineage of Cyprinus carpio from Lake Biwa, central Japan, based on mtDNA sequence data, with reference to possible multiple origins of koi. Journal of Fish Biology, 66, 1516–1528. https://doi.org/10.1111/j.1095-8649.2005.00676.x.
Article
Google Scholar
Machado, C., Zaleski, T., Rodrigues, E., Carvalho, C. S., Cadena, S. M., Gozzi, G. J., … Donatti, L. (2014). Effect of temperature acclimation on the liver antioxidant defence system of the Antarctic notothenioids Notothenia coriiceps and Notothenia rossii. Comparative Biochemistry and Physiology, Part B, 172–173, 21–28. https://doi.org/10.1016/j.cbpb.2014.02.003.
Madeira, D., Vinagre, C., & Diniz, M. S. (2016a). Are fish in hot water? Effects of warming on oxidative stress metabolism in the commercial species Sparus aurata. Ecological Indicators, 63, 324–331. https://doi.org/10.1016/j.ecolind.2015.12.008.
Article
CAS
Google Scholar
Madeira, D., Narciso, L., Cabral, H. N., Vinagre, C., & Diniz, M. S. (2013). Influence of temperature in thermal and oxidative stress responses in estuarine fish. Comparative Biochemistry and Physiology—A Molecular and Integrative Physiology, 166, 237–243. https://doi.org/10.1016/j.cbpa.2013.06.008.
Article
CAS
Google Scholar
Madeira, C., Madeira, D., Diniz, M. S., Cabral, H. N., & Vinagre, C. (2016b). Thermal acclimation in clownfish: an integrated biomarker response and multi-tissue experimental approach. Ecological Indicators, 71, 280–292. https://doi.org/10.1016/j.ecolind.2016.07.009.
Article
Google Scholar
Moron, M. S., Depierre, J. W., & Mannervik, M. (1979). Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochimica et Biophysica Acta (BBA) - General Subjects, 582(1), 67–78. https://doi.org/10.1016/0304-4165(79)90289-7.
Article
CAS
Google Scholar
Moyano, M., Candebat, C., Ruhbaum, Y., Álvarez-Fernández, S., Claireaux, G., Zambonino-Infante, J. L., & Peck, M. A. (2017). Effects of warming rate, acclimation temperature and ontogeny on the critical thermal maximum of temperate marine fish larvae. PLoS ONE, 12(7), e0179928. https://doi.org/10.1371/journal.pone.0179928.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakano, T., Kameda, M., Shoji, Y., Hayashi, S., Yamaguchi, T., & Sato, M. (2014). Effect of severe environmental thermal stress on redox state in salmon. Redox Biology, 2, 772–776. https://doi.org/10.1016/j.redox.2014.05.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nelson, N. (1944). A photometric adaptation of the somogyi method for determination of glucose. Journal of Biological Chemistry, 153, 375–380.
CAS
Google Scholar
Niehaus, W. G., & Samuelsson, B. (1968). Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. European Journal of Biochemistry, 6(1), 126–130. https://doi.org/10.1111/j.1432-1033.1968.tb00428.x.
Article
CAS
PubMed
Google Scholar
Padilla-Ramírez, S., Díaz, F., Re, A. D., Galindo-Sanchez, C. E., Sanchez-Lizarraga, A. L., Nuñez-Moreno, L. A., … Rosas, C. (2015). The effects of thermal acclimation on the behavior, thermal tolerance, and respiratory metabolism in a crab inhabiting a wide range of thermal habitats (Cancer antennarius Stimpson, 1856, the red shore crab). Marine and Freshwater Behaviour and Physiology, 48, 89–101. https://doi.org/10.1080/10236244.2015.1019212.
Parihar, M. S., & Dubey, A. K. (1995). Lipid peroxidation and ascorbic acid status in respiratory organs of male and female freshwater catfish Heteropneustes fossilis exposed to temperature increase. Comparative Biochemistry & Physiology, 112(3), 309–313. https://doi.org/10.1016/0742-8413(95)02025-X.
Article
CAS
Google Scholar
Rossi, A., Bacchetta, C., & Cazenave, J. (2017). Effect of thermal stress on metabolic and oxidative stress biomarkers of Hoplosternum littorale (Teleostei, Callichthyidae). Ecological Indicators, 79, 361–370. https://doi.org/10.1016/j.ecolind.2017.04.042.
Article
CAS
Google Scholar
Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47, 389–394.
Article
CAS
Google Scholar
Smogyi, M. (1952). Notes on sugar determination. Journal of Biological Chemistry, 195(1), 19–23.
CAS
PubMed
Google Scholar
Tripathi, N. K., Latimer, K. S., Lewis, T., & Burnley, V. V. (2003). Biochemical reference intervals for koi (Cyprinus carpio). Comparative Clinical Pathology, 12, 160–165. https://doi.org/10.1007/s00580-003-0495-x.
Article
CAS
Google Scholar
Tropea, C., Stumpf, L., & López Greco, L. S. (2015). Effect of temperature on biochemical composition, growth and reproduction of the ornamental red cherry shrimp Neocaridina heteropoda heteropoda (Decapoda, Caridea). PLoS ONE, 10(3), e0119468. https://doi.org/10.1371/journal.pone.0119468.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vinagre, C., Madeira, D., Narciso, L., Cabral, H., & Diniz, M. (2012). Effect of temperature on oxidative stress in fish: lipid peroxidation and catalase activity in the muscle of juvenile seabass, Dicentrarchus labrax. Ecological Indicators, 23, 274–279. https://doi.org/10.1016/j.ecolind.2012.04.009.
Article
CAS
Google Scholar
Wells, R. M. G., & Pankhurst, W. N. (1999). Evaluation of simple instruments for the measurement of blood glucose and lactate, and plasma protein as stress indicators in fish. Journal of The World Aquaculture Society, 30(2), 276–284.
Article
Google Scholar