Abunasef, S. K., & El-Beshbishy, R. A. (2014). The histological changes of the female rat mammary gland during the fertile period with a special reference to E-cadherin expression. The Egyptian Journal of Histology, 37, 45–55.
Article
Google Scholar
Al-Hiyasat, A. S., Darmani, H., & Elbetieha, A. M. (2002). Effects of bisphenol A on adult male mouse fertility. European Journal of Oral Science, 110, 163–167.
Article
CAS
Google Scholar
Amos-Kroohs, R. M., Cheng, A. A., Clugston, R. D., Huang, T. N., Yen, C. L. E., Blaner, W. S., & Smith, S. M. (2016). Mammary gland structure and functional changes in mouse model of chronic gestational alcohol exposure. The FASEB Journal, 30.
Betancourt, A. M., Mobley, J. A., Russo, J., & Lamartiniere, C. A. (2010). Proteomic analysis in mammary glands of rat offspring exposed in utero to bisphenol A. Journal of Proteomics, 73, 1241–1253.
Article
CAS
PubMed
Google Scholar
Guidelines on the regulation of scientific experiments of animals, Minister of Environment and forests department (animal Welfare Divison) Government of India, 2007
Duangjai, R., Tomohiro, Y., Shiro, K., & Mitsumori, K. (2010). Immunohistochemical localization of annexin A5 in the mammary gland of rats: up-regulation of expression by pup removal. The Journal of Veterinary Medical Science, 72, 19–22.
Article
Google Scholar
ECB (2008). European Union risk assessment report draft: (bisphenol A). (CAS No. 80-0507; EWINECS No. 201-245-8).
Google Scholar
Fenichel, P., Chevalier, N., & Brucker-Davis, F. (2013). Bisphenol A: anendocrine and metabolic disruptor. AnnalesEndocrinologie, 74, 211–220.
Fenton, S. E. (2006). Endocrine disrupting compounds and mammary gland development: early exposure and later life consequences. Endocrinology, 147, 18–24.
Article
Google Scholar
Fernandez, M. F., Arrebola, J. P., Taoufiki, J., Navalon, A., Ballesteros, O., Pulgar, R., … Olea, N. (2007). Bisphenol-A and chlorinated derivatives in adipose tissue of women. Reproductive Toxicology, 24, 259–264.
Article
CAS
PubMed
Google Scholar
Foster, W. G., Younglai, E. V., Boutross-Tadross, O., Hughes, C. L., & Wade, M. G. (2004). Mammary gland morphology in Sprague-Dawley rats following treatment with an organochlorine mixture in utero and neonatal genistein. Toxicological Sciences, 77, 91–100.
Article
CAS
PubMed
Google Scholar
Gjorevski, N., & Nelson, C. M. (2011). Integrated morphodynamic signaling of the mammary gland. Nature Reviews Molecular Cell Biology, 12, 581–593.
Article
CAS
PubMed
Google Scholar
Halperin, J., Dorfman, V. B., Fraunhoffer, N., & Vitullo, A. D. (2013). Estradiol, progesterone, and prolactin modulate mammary gland morphogenesis in adult female plains vizcacha (Lagostomusmaximus). Journal of Molecular Histology, 44, 299–310.
Article
CAS
PubMed
Google Scholar
Hsu, S. M., Raine, L., & Fanger, H. (1981). Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. Journal of Histochemistry & Cytochemistry, 29, 577–580.
Article
CAS
Google Scholar
Ibrahim, M. A. A., Elbakry, R. H., & Bayomy, N. A. (2016). Effect of bisphenol A on morphology, apoptosis and proliferation in the resting mammary gland of the adult albino rat. International Journal of Experimental Pathology, 97, 27–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jenkins, S., Raghuraman, N., Eltoum, I., Carpenter, M., Russo, J., & Lamartinere, C. (2009). Oral exposure to bisphenol A increase dimethylbenzanthracene-induced mammary cancer in rats. Environmental Health Perspectives, 117, 910–915.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kabuto, H., Amakawa, M., & Shishibori, T. (2004). Exposure to bisphenol A during embryonic fetal life and infancy increases oxidative injury and causes underdevelopment of the brain and testis in mice. Life Science, 74, 2931–2940.
Article
CAS
Google Scholar
Karim, Z., & Husain, Q. (2010). Application of fly ash adsorbed peroxidase for the removal of bisphenol A in a batch process and the continuous reactor: assessment of genotoxicity of its product. Food and Chemical Toxicology, 48, 3385–3390.
Article
CAS
PubMed
Google Scholar
Le, H. H., Carlson, E. M., Chua, J. P., & Belcher, S. M. (2008). Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicology, 17, 149–156.
Google Scholar
Liu, X. L., Chen, X. Y., Wang, Z. C., Shen, T., & Zhao, H. (2013). Effects of exposure to bisphenol A during pregnancy and lactation on the testicular morphology and caspase-3 protein expression of ICR pups. Biomedical Reports, 1, 420–424.
Article
CAS
PubMed
PubMed Central
Google Scholar
Macias, H., & Hinck, L. (2012). Mammary gland development. Wiley interdisciplinary Reviews-Developmental Biology, 1, 533–557.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandrup, K., Boberg, J., Isling, L. K., Christiansen, S., & Hass, U. (2016). Low-dose effects of bisphenol A on mammary gland development in rats. Andrology, 4, 673–683.
Article
CAS
PubMed
Google Scholar
Russo, J., & Russo, I. H. (1987). Development of the human mammary gland. In M. C. Neville, & C. W. Daniel (Eds.), The mammary gland. Development, regulation and function, (pp. 67–93). New York: Plenum Publishing.
Chapter
Google Scholar
Stewart, M. K. G., Plante, I., Penuela, S., & Laird, D. W. (2016). Loss of Panx1 impairs mammary gland development at lactation: Implications for breast tumorigenesis. PLoS One, 11, 1–23.
Tiede, B., & Kang, Y. (2011). From milk to malignancy: the role of mammary stem cells in development, pregnancy and breast cancer. Cell Research, 21, 245–257.
Article
PubMed
PubMed Central
Google Scholar
Valentino, R., D’Esposito, V., Passaretti, F., Liotti, A., Cabaro, S., Longo, M., … Formisano, P. (2013). Bisphenol-A impairs insulin action and up-regulates inflammatory pathways inhuman subcutaneous adipocytes and 3T3-L1 cells. PLoS One, 8, e82099.
Article
PubMed
PubMed Central
Google Scholar
Vandenberg, L. N., Maffini, M. V., Schaeberle, C. M., Ucci, A. A., Sonnenschein, C., Rubin, B. S., & Soto, A. M. (2008). Perinatal exposure to the xenoestrogen bisphenol-A induces mammary intraductal hyperplasias in adult CD-1 mice. Reproductive Toxicology, 26, 210–219.
Article
CAS
PubMed
Google Scholar
Vandenberg, L. N., Maffini, M. V., Wadia, P. R., Sonnenschein, C., Rubin, B. S., & Soto, A. M. (2007). Exposure to environmentally relevant doses of the xenoestrogen bisphenol-A alters the development of the fetal mouse mammary gland. Endocrinology, 148, 116–127.
Article
CAS
PubMed
Google Scholar
Wadia, P. R., Cabaton, N. J., Borrero, M. D., Rubin, B. S., Sonnenschein, C., Shioda, T., & Soto, A. M. (2013). Low-dose BPA exposure alters the mesenchymal and epithelial transcriptomes of the mouse fetal mammary gland. PLoS One, 8, e63902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang, Z., Liu, H., & Liu, S. (2017). Low-dose bisphenol A exposure: a seemingly instigating carcinogenic effect on breast cancer. Advanced Science, 4, 1600248.
Article
PubMed
Google Scholar
Watson, C. J., & Khaled, W. T. (2008). Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development, 135, 995–1003.
Article
CAS
PubMed
Google Scholar