Abdul-Farah, M., Ateeq, B., Ali, M. N., & Ahmad, W. (2004). Studies on lethal concentrations and toxicity stress of some xenobiotics on aquatic organisms. Chemosphere, 55, 257–265.
Article
CAS
Google Scholar
Adolfsson-Erici, M., Pettersson, M., Parkkonen, J., & Sturve, J. (2002). Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere, 46, 1485–1489.
Article
CAS
PubMed
Google Scholar
Ahn, K. C., Zhao, B., Chen, J., Cherednichenko, G., Sanmarti, E., & Denison, M. S. (2008). In vitro biologic activities of the antimicrobials triclocarban, its analogs, and triclosan in bioassay screens: Receptor-based bioassay screens. Environmental Health Perspectives, 116, 1203–1210.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ambili, T. R., Saravanan, M., Ramesh, M., Abhijith, D. B., & Poopal, R. K. (2013). Toxicological effects of the antibiotic oxytetracycline to an Indian major carp Labeo rohita. Archives of Environmental Contamination and Toxicology, 64, 494–503.
Article
CAS
PubMed
Google Scholar
American Public Health Association (APHA) (1998). Standard methods for the examination of water and wastewater, (20th ed., ). Washington, DC: American Public Health Association.
Google Scholar
APHA, AWWA, WPCF (2005). Standard methods for the examination of water and waste water 21
st
, 401 edn. Washington, DC: American Public Health Association.
Google Scholar
Banaee, M., Sureda, A., Mirvaghefi, A. R., & Ahmadi, K. (2011). Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pesticide Biochemistry and Physiology, 99, 1–6.
Article
CAS
Google Scholar
Barse, A. V., Chakrabarti, T., Ghosh, T. K., Pal, A. K., Kumar, N., Raman, R. P., & Jadhao, S. B. (2010). Vitellogenin induction and histometabolic changes following exposure of Cyprinus carpio to methylparaben. Asian-Australasian Journal of Animal Sciences, 23(12), 1557–1565.
Article
CAS
Google Scholar
Basha, P. S., & Rani, A. U. (2003). Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (tilapia). Ecotoxicology and Environmental Safety, 56, 218–221.
Article
CAS
PubMed
Google Scholar
Bennett, E. R., Ross, P. S., Huff, D., Alaee, M., & Letcher, R. J. (2009). Chlorinated and brominated organic contaminants and metabolites in the plasma and diet of a captive killer whale (Orcinus orca). Marine Pollution Bulletin, 58, 1078–1083.
Article
CAS
PubMed
Google Scholar
Binelli, A., Cogni, D., Parolini, M., Riva, C., & Provini, A. (2009). In vivo experiments for the evaluation of genotoxic and cytotoxic effects of triclosan in zebra mussel hemocytes. Aquatic Toxicology, 91, 238–244.
Article
CAS
PubMed
Google Scholar
Calafat, A. M., Ye, X., Wong, L. Y., Reidy, J. A., & Needham, L. L. (2008). Urinary concentrations of triclosan in the U.S. population: 2003-2004. Environmental Health Perspectives, 116, 303–307.
Article
CAS
PubMed
Google Scholar
Canesi, L., Ciacci, C., Lorusso, L. C., Betti, M., Gallo, G., Pojana, G., & Marcomini, A. (2007). Effects of triclosan on Mytilus galloprovincialis hemocyte function and digestive gland enzyme activities: Possible modes of action on non target organisms. Comparative Biochemistry and Physiology, Part C, 145, 464–472.
Google Scholar
Capkin, E., Ozcelep, T., Kayis, S., & Altinok, I. (2017). Antimicrobial agents, triclosan, chloroxylenol, methylisothiazolinone and borax, used in cleaning had genotoxic and histopathologic effects on rainbow trout. Chemosphere, 182, 720–729.
Article
CAS
PubMed
Google Scholar
Cho, M. K., & Kim, S. G. (2000). Induction of class alpha glutathione S-transferases by 4-methylthiazole in the rat liver: Role of oxidative stress. Toxicology Letters, 115, 107–115.
Article
CAS
PubMed
Google Scholar
Clayton, E. M., Todd, M., Dowd, J. B., & Aiello, A. E. (2011). The impact of bisphenol a and triclosan on immune parameters in the U.S. population, NHANES 2003-2006. Environmental Health Perspectives, 119, 390–396.
Article
CAS
PubMed
Google Scholar
Dann, A.B., & Hontela, A. (2011). Triclosan : environmental exposure, toxicity and mechanisms of action. Journal of Applied Toxicology, 31(4), 285–311.
Article
CAS
PubMed
Google Scholar
Dayan, A. D. (2007). Risk assessment of triclosan [Irgasan] in human breast milk. Food and Chemical Toxicology, 45, 125–129.
Article
CAS
PubMed
Google Scholar
Ding, T., Lin, K., Bao, L., Yang, M., Li, J., Yang, B., & Gan, J. (2017). Biouptake, toxicity and biotransformation of triclosan in diatom Cymbella sp. and the influence of humic acid. Environmental Pollution, 234, 231–242.
Article
PubMed
CAS
Google Scholar
Dourado, D. F., Fernandes, P. A., Mannervik, B., & Romos, M. J. (2008). Glutathione transferase: New model for glutathione activation. Chemistry, 14, 9591–9598.
Article
CAS
PubMed
Google Scholar
Du, J., Cao, L., Jia, R., & Yin, G. (2017). Hepatoprotective and antioxidant effects of dietary glycyrrhiza polysaccharide against TCDD-induced hepatic injury and RT-PCR quantification of AHR2, ARNT2, CYP1A mRNA in Jian carp (Cyprinus carpio var. Jian). Journal of Environmental Sciences, 51, 181–190.
Article
Google Scholar
El-Shehawi, A. M., Ali, F. K., & Seehy, M. A. (2007). Estimation of water pollution by genetic biomarkers in tilapia and catfish species shows species-site interaction. African Journal of Biotechnology, 6, 840–846.
CAS
Google Scholar
Escarrone, A. L., Caldas, S. S., Primel, E. G., Martins, S. E., & Nery, L. E. (2016). Uptake, tissue distribution and depuration of triclosan in the guppy Poecilia vivipara acclimated to freshwater. Science of the Total Environment, 560-561, 218–224.
Article
CAS
PubMed
Google Scholar
Fair, P. A., Lee, H. B., Adams, J., Darling, C., Pacepavicius, G., Alaee, M., … Muir, D. (2009). Occurrence of triclosan in plasma of wild Atlantic bottlenose dolphins (Tursiops truncatus) and in their environment. Environmental Pollution, 157, 2248–2254.
Article
CAS
PubMed
Google Scholar
Falisse, E., Voisin, A. S., & Silvestre, F. (2017). Impacts of triclosan exposure on zebrafish early-life stage: Toxicity and acclimation mechanisms. Aquatic Toxicology, 189, 97–107.
Article
PubMed
CAS
Google Scholar
Fang, J. L., Stingley, R. L., Beland, F. A., Harrouk, W., Lumpkins, D. L., & Howard, P. (2010). Occurrence, efficacy, metabolism, and toxicity of triclosan. Journal of Environmental Science and Health. C: Environmental Carcinogenesis and Ecotoxicology Reviews, 28, 147–171.
Article
CAS
Google Scholar
FDA (U.S. Food and Drug Administration) (2016). 21 CFR part 310 safety and effectiveness of consumer antiseptics. Topical antimicrobial drug products for over-the-counter human use. Final Rule, Federal Register, 81, 61106–61130.
Google Scholar
Fernandes, C., Fontainhas-Fernandes, A., Ferreira, M., & Salgado, M. A. (2008). Oxidative stress response in gill and liver of Liza saliens, from the Esmoriz-Paramos coastal lagoon, Portugal. Archives of Environmental Contamination and Toxicology, 55, 262–269.
Article
CAS
PubMed
Google Scholar
Foran, C. M., Bennett, E. R., & Benson, W. H. (2000). Developmental evaluation of a potential non-steroidal estrogen: Triclosan. Marine Environmental Research, 50, 153–156.
Article
CAS
PubMed
Google Scholar
Fort, D. J., Mathis, M. B., Hanson, W., Fort, C. E., Navarro, L. T., Peter, R., … Plautz, J. R. (2011). Triclosan and thyroid-mediated metamorphosis in anurans: Differentiating growth effects from thyroid-driven metamorphosis in Xenopus laevis. Toxicological Sciences, 121, 292–302.
Article
CAS
PubMed
Google Scholar
Franz, S., Altenburger, R., Heilmaeir, H., & Schmidtt-Jansen, M. (2008). What contributes to the sensitivity of microalgae to triclosan? Aquatic Toxicology, 90, 102–108.
Article
CAS
PubMed
Google Scholar
Gee, R. H., Taylor, C. A., & Darbre, P. D. (2008). Oestrogenic and androgenic activity of triclosan in breast cancer cells. Journal of Applied Toxicology, 28, 78–91.
Article
CAS
PubMed
Google Scholar
George, S. G. (1994). Enzymology and molecular biology of phase II xenobiotics conjugating enzymes in fish. Aquatic Toxicology, 4, 37–85.
Google Scholar
Halden, R. U., & Paull, D. H. (2005). Co-occurrence of triclocarban and triclosan in US water resources. Environmental Science & Technology, 39, 1420–1426.
Article
CAS
Google Scholar
Halliwell, B., & Gutteridge, J. M. C. (1989). Free radicals in biology and medicine, (2nd ed., p. 543). Oxford: Clarendon Press.
Google Scholar
Han, J., Won, E. J., Hwang, U. K., Kim, I. C., Yim, J. H., & Lee, J. S. (2016). Triclosan (TCS) and Triclocarban (TCC) cause lifespan reduction and reproductive impairment through oxidative stress-mediated expression of the defensome in the monogonont rotifer (Brachionus koreanus). Comparative Biochemistry and Physiology C Toxicology and Pharmacology, 185-186, 131–137.
Article
CAS
Google Scholar
Hyne, R.V. & Maher, W.A. (2003). Invertebrate biomarkers: links to toxicosis that predict population decline. Ecotoxicology and Environmental Safety, 54, 366–374.
Helbing, C. C., van Aggelen, G., & Veldhoen, N. (2011). Triclosan affects thyroid hormone-dependent metamorphosis in anurans. Toxicological Sciences, 119, 417–418.
Article
CAS
PubMed
Google Scholar
Hermes-Lima, M., & Storey, K. B. (1993). In vitro oxidative inactivation of glutathione S-transferase from a freeze tolerant reptile. Molecular and Cellular Biology, 124, 149–158.
CAS
Google Scholar
Horie, Y., Yamagishi, T., Takahashi, H., Iguchi, T., & Tatarazako, N. (2017). Effects of triclosan on Japanese medaka (Oryzias latipes) during embryo development, early life stage and reproduction. Journal of Applied Toxicology, 38, 544–551.
Article
PubMed
CAS
Google Scholar
Hovander, L., Malmberg, T., Athanasiadou, M., Athanassiadis, I., Rahm, S., Bergman, A., & Wehler, E. K. (2002). Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma. Archives of Environmental Contamination and Toxicology, 42, 105–117.
Article
CAS
PubMed
Google Scholar
Hu, J., Raikhel, V., Gopalakrishnan, K., Fernandez-Hernandez, H., Lambertini, L., & Manservisi, F. (2016). Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model. Microbiome, 4, 26.
Article
PubMed
PubMed Central
Google Scholar
Huang, X., Tu, Y., Song, C., Li, T., Lin, J., Wu, Y., … Wu, C. (2016). Interactions between the antimicrobial agent triclosan and the bloom-forming cyanobacteria Microcystis aeruginosa. Aquatic Toxicology, 172, 103–110.
Article
CAS
PubMed
Google Scholar
Ishibashi, H., Matsumura, N., Hirano, M., Matsuoka, M., Shiratsuchi, H., Ishibashi, Y., … Arizono, K. (2004). Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquatic Toxicology, 67, 167–179.
Article
CAS
PubMed
Google Scholar
Kabeer Ahmad, S. J., & Rao, K. V. (1980). Toxicity of malathion to the freshwater fish Tilapia mossambicus. Bulletin of Environmental Contamination and Toxicology, 24, 870–874.
Article
Google Scholar
Ku, P., Wu, X., Nie, X., Ou, R., Wang, L., Su, T., & Li, Y. (2014). Effects of triclosan on the detoxification system in the yellow catfish (Pelteobagrus fulvidraco): Expressions of CYP and GST genes and corresponding enzyme activity in phase I, II and antioxidant system. Comparative Biochemistry and Physiology - Part C: Toxicology, 166, 105–114.
CAS
Google Scholar
Kumar, V., Chakraborty, A., Kural, M. R., & Roy, P. (2009). Alteration of testicular steroidogenesis and histopathology of reproductive system in male rats treated with triclosan. Reproductive Toxicology, 27, 177–185.
Article
CAS
PubMed
Google Scholar
Lamb, J. G., & Franklin, M. R. (2000). Early events in the induction of rat hepatic UDP-glucuronosyl-transferase, glutathione S-transferase and microsomal epoxide hydrolase by 1,7-phenanthroline: Comparison with oltipraz, tert-butyl-4-hydroxyanisole, and tert-butylhydroquinone. Drug Metabolism & Disposition, 28, 1018–1102.
CAS
Google Scholar
Liang, X., Nie, X., Ying, G., An, T., & Li, K. (2013). Assessment of toxic effects of triclosan on the swordtail fish (Xiphophorus helleri) by a multi-biomarker approach. Chemosphere, 90, 1281–1288.
Article
CAS
PubMed
Google Scholar
Lindström, A., Buerge, I. J., Poiger, T., Bergqvist, P. A., Muller, M. D., & Buser, H. R. (2002). Occurrence and environmental behaviour of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environmental Science & Technology, 36, 2322–2329.
Article
CAS
Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, L. (1951). Protein measurement with Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.
CAS
PubMed
Google Scholar
Lozano, N., Rice, C. P., Ramirez, M., & Torrents, A. (2013). Fate of triclocarban, triclosan and methyltriclosan during wastewater and biosolids treatment processes. Water Research, 47, 4519–4527.
Article
CAS
PubMed
Google Scholar
Lyndall, J., Fuchsman, P., Bock, M., Barber, T., Lauren, D., Leigh, K., … Capdevielle, M. (2010). Probabilistic risk evaluation for triclosan in surface water, sediments, and aquatic biota tissues. Integrated Environmental Assessment and Management, 6(3), 419–440.
Article
CAS
PubMed
Google Scholar
Malarvizhi, A., Kavitha, C., Saravanan, M., & Ramesh, M. (2012). Carbamazepine (CBZ) induced enzymatic stress in gill, liver and muscle of a common carp, Cyprinus carpio. Journal of King Saud University – Science, 24, 179–186.
Article
Google Scholar
Martins, D., Monteiro, M. S., Soares, A. M., & Quintaneiro, C. (2017). Effects of 4-MBC and triclosan in embryos of the frog Pelophylax perezi. Chemosphere, 178, 325–332.
Article
CAS
PubMed
Google Scholar
Nwani, C. D., Nagpure, N. S., Kumar, R., Kushwaha, B., Kumar, P., & Lakra, W. S. (2011). Mutagenic and genotoxic assessment of atrazine-based herbicide to freshwater fish Channa punctatus (Bloch) using micronucleus test and single cell gel electrophoresis. Environmental Toxicology and Pharmacology, 31, 314–322.
Article
CAS
PubMed
Google Scholar
Oliveira, R., Domingues, I., Grisolia, C. K., & Soares, A. (2009). Effects of triclosan on zebrafish early-life stages and adults. Environmental Science and Pollution Research, 16, 679–688.
Article
CAS
PubMed
Google Scholar
Oruc, E. O., Sevgiler, Y., & Uner, N. (2004). Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl. Comparative Biochemistry and Physiology, 137, 43–51.
Article
PubMed
CAS
Google Scholar
Orvos, D. R., Versteeg, D. J., Inauen, J., Capdevielle, M., Rothenstein, A., & Cunningham, V. (2002). Aquatic toxicity of triclosan. Environmental Toxicology and Chemistry, 21, 13381–13349.
Article
Google Scholar
Park, J. C., Han, J., Lee, M. C., Seo, J. S., & Lee, J. S. (2017). Effects of triclosan (TCS) on fecundity, the antioxidant system, and oxidative stress-mediated gene expression in the copepod Tigriopus japonicus. Aquatic Toxicology, 189, 16–24.
Article
CAS
PubMed
Google Scholar
Passino, D. R. M., & Smith, S. B. (1987). Acute bioassays and hazard evaluation of representative contaminants detected in great lakes fish. Environmental Toxicology and Chemistry, 6, 901–907.
Article
CAS
Google Scholar
Peng, X. Z., Xiong, S. S., Qu, W. H., Wang, Z. F., Tan, J. H., Jin, J. B., … Fan, Y. J. (2017). Persistence, temporal and spatial profiles of ultraviolet absorbents and phenolic personal care products in riverine and estuarine sediment of the Pearl River catchment, China. Journal of Hazardous Materials, 323(Pt A), 139–146.
Article
CAS
PubMed
Google Scholar
Peng, Y., Luo, Y., Nie, X. P., Liao, W., Yang, Y. F., & Ying, G. G. (2013). Toxic effects of triclosan on the detoxification system and breeding of Daphnia magna. Ecotoxicology, 22, 1384–1394.
Article
CAS
PubMed
Google Scholar
Ramaswamy, B. R., Shanmugam, G., Velu, G., Rengarajan, B., & Larsson, D. G. (2011). GC-MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. Journal of Hazardous Materials, 186, 1586–1593.
Article
CAS
PubMed
Google Scholar
Ramesh, M., Anitha, S., Poopal, R. K., & Shobana, C. (2018). Evaluation of acute and sublethal effects of chloroquine (C18H26CIN3) on certain enzymological and histopathological biomarkers responses of a freshwater fish Cyprinus carpio. Toxicology Reports, 5, 18–27.
Raut, S. A., & Angus, R. A. (2010). Triclosan has endocrine-disrupting effects in male western mosquitofish, Gambusia affinis. Environmental Toxicology and Chemistry, 29, 1287–1291.
CAS
PubMed
Google Scholar
Reddy, S. L. N., & Venugopal, N. B. R. K. (1991). In vivo effects of cadmium chloride on certain aspects of protein metabolism in tissues of a freshwater field crab, Barytelphusa guerini. Bulletin of Environmental Contamination and Toxicology, 46, 583–590.
Article
CAS
PubMed
Google Scholar
Reitman, S., & Franckel, S. (1957). A colorimetric method for the determination of serum glutamic oxalo acetic and glutamic pyruvic transaminase. American Journal of Clinical Pathology, 28, 56–63.
Article
CAS
PubMed
Google Scholar
Renuka, S., Poopal, R. K., Ramesh, M., & Clara-Bindu, F. (2018). Responses of Labeo rohita fingerlings to N-acetyl-p-aminophenol toxicity. Ecotoxicology and Environmental Safety, 157, 73–80.
Article
CAS
PubMed
Google Scholar
Rüdel, T., Bohmer, W., Müller, M., Fliedner, A., Ricking, M., Teubner, D., & Schröter-Kermani, C. (2013). Retrospective study of triclosan and methyl-triclosan residues in fish and suspended particulate matter: Results from the German Environmental Specimen Bank. Chemosphere, 91, 1517–1524.
Article
PubMed
CAS
Google Scholar
Sahu, V. K., Karmakar, S., Kumar, S., Shukla, S. P., & Kumar, K. (2018). Triclosan toxicity alters behavioral and hematological parameters and vital antioxidant and neurological enzymes in Pangasianodon hypophthalmus (Sauvage, 1878). Aquatic Toxicology, 202, 145–152.
Article
CAS
PubMed
Google Scholar
Schnitzler, J. G., Frederich, B., Dussenne, M., Klaren, P. H., Silvestre, F., & Das, K. (2016). Triclosan exposure results in alterations of thyroid hormone status and retarded early development and metamorphosis in Cyprinodon variegatus. Aquatic Toxicology, 181, 1–10.
Article
CAS
PubMed
Google Scholar
Shanmugam, G., Ramasamy, K., Selvaraj, K. K., Sampath, S., & Ramaswamy, B. R. (2014). Triclosan in fresh water fish Gibelion catla from the Kaveri River, India, and its consumption risk assessment. Environmental Forensics, 15, 207–212.
Article
CAS
Google Scholar
Sheehan, D., Meade, G., Foley, V. M., & Dowd, C. A. (2001). Structure, function and evolution of glutathione transferases: Implications for classification of nonmammalian members of an ancient enzyme superfamily. Biochemistry Journal, 360, 1–16.
Article
CAS
Google Scholar
Smith, J., & Litwack, G. (1980). Roles of ligandin and the glutathione S-transferases in binding steroid metabolites, carcinogens and other compounds. Review in Biochemistry Toxicology, 2, 1–47.
Google Scholar
Sorensen, J. P. R., Lapworth, D. J., Nkhuwa, D. C. W., Stuart, M. E., Gooddy, D. C., Bell, R. A., … Pedley, S. (2015). Emerging contaminants in urban groundwater sources in Africa. Water Research, 72, 51–63.
Article
CAS
PubMed
Google Scholar
Srivastava, A. S., Oohara, I., Suzuki, T., Shenouda, S., Singh, S. N., Chauhan, D. P., & Carrier, E. (2004). Purification and properties of cytosolic alanine aminotransferase from the liver of two freshwater fish, Clarias batrachus and Labeo rohita. Comparative Biochemistry and Physiology - Part B, 137, 197–207.
Article
CAS
Google Scholar
Suller, M. T., & Russell, A. D. (2000). Triclosan and antibiotic resistance in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 46, 11–18.
Article
CAS
PubMed
Google Scholar
Valters, K., Li, H., Alaee, M., D’Sa, I., Marsh, G., Bergman, A., & Letcher, R. J. (2005). Polybrominated diphenyl ethers and hydroxylated and methoxylated brominated and chlorinated analogues in the plasma of fish from the Detroit River. Environmental Science & Technology, 39, 5612–5619.
Article
CAS
Google Scholar
Veldhoen, N., Skirrow, R. C., Osachoff, H., Wigmore, H., Clapson, D. J., Gunderson, M. P., … Helbing, C. C. (2006). The bactericidal agent triclosan modulates thyroid hormone associated gene expression and disrupts postembryonic anuran development. Aquatic Toxicology, 80, 217–227.
Article
CAS
PubMed
Google Scholar
Venkateswara Rao, J. (2006). Sublethal effects of an organophosphorus insecticide (RPR-II) on biochemical parameters of tilapia, Oreochromis mossambicus. Comparative Biochemistry and Physiology - Part C: Toxicology, 143, 492–498.
CAS
Google Scholar
Wang, F., Guo, X., Chen, W., Sun, Y., & Fan, C. (2017). Effects of triclosan on hormones and reproductive axis in female Yellow River carp (Cyprinus carpio): Potential mechanisms underlying estrogen effect. Toxicology and Applied Pharmacology, 336, 49–54.
Article
CAS
PubMed
Google Scholar
Wang, F., Liu, F., Chen, W., Xu, R., & Wang, W. (2017). Effects of triclosan (TCS) on hormonal balance and genes of hypothalamus-pituitary- gonad axis of juvenile male Yellow River carp (Cyprinus carpio). Chemosphere, 193, 695–670.
Article
PubMed
CAS
Google Scholar
Wang, F., Xu, R., Zheng, F., & Haifang, L. (2018). Effects of triclosan on acute toxicity, genetic toxicity and oxidative stress in goldfish (Carassius auratus). Experimental Animals, 67(2), 219–227.
Article
CAS
PubMed
Google Scholar
Yoon, D. S., Choi, Y., Cha, D. S., Zhang, P., Choi, S. M., Alfhili, M. A., … Lee, M. H. (2017). Triclosan disrupts SKN-1/Nrf2-mediated oxidative stress response in C. elegans and human mesenchymal stem cells. Scientific Reports, 7, 12592.
Yueh, M. F., & Tukey, R. H. (2016). Triclosan: A widespread environmental toxicant with many biological effects. Annual Review of Pharmacology and Toxicology, 56, 251–272.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang, L., Niu, J., & Wang, Y. (2016). Full life-cycle toxicity assessment on triclosan using rotifer Brachionus calyciflorus. Ecotoxicology and Environmental Safety, 127, 30–35.
Article
CAS
PubMed
Google Scholar